Antonova I V* Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk, Russia Dates: Received: 29 September, 2016; Accepted: 12 October, 2016; Published: 13 October, 2016 *Corresponding author: I V Antonova, Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk, Russia, E-mail: antonova@isp.nsc.ru www.peertechz.com ISSN: 2455-3492 **Keywords:** Graphene; Flexible electronics; Traditional gate dielectrics; Fluorinated grapheme; Oxide grapheme ### **Review Article** # Non-Organic Dielectric Layers for Graphene and Flexible Electronics #### **Abstract** Future electronics technology is expected to develop from rigid to flexible devices, which requires breakthroughs in materials' properties, especially flexibility, in combination with desirable electrical insulating, semiconducting and metallic properties. Recently emerging 2D materials such as graphene are promising for an active conductive layer in a wide spectrum of flexible electronic devices. Developing optimized dielectrics for the graphene active layer is critical for graphene applications. The advances and limitations of qualitatively different traditional dielectric metal oxide layers (high-k dielectrics Al_2O_3 , HfO_2 , and ZrO_2) used as a gate in graphene field effect transistors on flexible substrates are considered in the first part of the present review. Its second part analyzes properties of novel dielectric materials (h-BN, Y_2O_3 , graphene oxide, fluorinated graphene, composite dielectrics, ion gels) used for graphene transistors. Dielectric layers fabricated from fluorinated graphene or in combination with graphene oxide are the most promising graphene based flexible and transparent electronics. ### Introduction Future electronics technology will evolve from rigid devices to bendable, rollable, foldable, stretchable or transparent ones that are wearable like clothes or accessories [1-3]. The first breakthrough in this direction occurred in the form of flexible electronics for a wide spectrum of applications (bio- and medical items, sensors and gadget displays on the textile or clothing electronics and so on). These flexible devices are expected to excel the rigid ones in durability, weight, and comfort. However their development necessitates breakthroughs in materials since in combination with desirable electrical insulating, semiconducting and metallic properties they need flexibility. Recently emerged 2D materials such as graphene, graphene derivates (graphene oxide, fluorinated graphene), hexagonal boron nitride (h-BN), and transition metal dichalcogenides are attractive because of their outstanding electrical and optical properties. Mechanical properties of these materials are different, and only part of them meets the requirements of flexible or stretchable electronics. Graphene based printed electronics is also a recently emerged and a fast grown field that has attracted large scientific and technological interest for the past few years. Graphene presents great promise as an active layer in wide spectrum of devices of flexible electronics and, first of all, in field effect transistors. Recent reports demonstrate successful realization of graphene field effect transistors (FETs) on flexible or even on stretchable substrates [4-8]. To achieve such applications the development of optimized dielectrics for the graphene active layer is critical (gate and interlayer dielectrics or/and substrate for graphene). The carrier transport in graphene films takes place at the interfaces with the dielectric or the semiconductor; therefore, the quality of such interface and the interaction with nearby dielectric layers (charge carrier scattering) determine the device performance. Nevertheless, the development of dielectric materials that can achieve highperformance device operation, good mechanical properties, and lowtemperature fabrication is not well established because the graphene thin film is very sensitive to surface conditions of dielectric layers [9]. In present review, the main materials applied nowadays as dielectric films for graphene based devices fabricated on the flexible substrate using traditional or printed technologies are discussed. The further opportunities for utilizing the graphene derivates such as graphene oxide and fluorinated graphene are also demonstrated. # Traditional materials for gate insulators in graphene FET on flexible substrates Presently, an indium tin oxide (ITO) is widely used as a transparent conductor for optoelectronic devices. However, ITO has poor mechanical properties; it tends to crack easily or shows defects when strained [3]. For these reasons, the use of graphene has been widely investigated in recent years as a transparent conductor for optoelectronic and photonic applications because of its combination of electrical, mechanical, and optical properties. The conductive graphene films or reduced oxide graphene layers are generally considered as a material for transistor channels or electrodes [10]. Traditional gate insulators SiO2, Al2O3, and HfO2 have several limitations for use in graphene transistors on flexible substrates, including low-facture strains less than 1%, poor mechanical strength, high growth temperatures, and poor interface between graphene and dielectric layers [3,11,12]. Nevertheless, oxides based high-k dielectric materials, such as Al₂O₃, HfO₂, and ZrO₂, are the most widely used in graphene FETs [13,14]. For example, Lu et al. [15], have demonstrated high-mobility and low-voltage graphene FETs, fabricated on a polyethylene terephthalate (PET) substrate with a high-capacitance natural aluminum oxide as the gate dielectric (evaporation of AL with its oxidation) in a self-aligned device configuration. The high capacitance of the native aluminum oxide and the self-alignment, which minimizes access resistance, yield a high current on/off ratio and an operation voltage below 3 V, along with high electron and hole mobility of 230 and 300 cm²/Vs, respectively. Moreover, the native aluminum oxide is resistant to mechanical bending and exhibits selfhealing upon electrical breakdown. The use of atomic layer deposition (ALD) with special precursors for high-k dielectrics allows decreasing the growth temperature and partially overcoming the limitation mentioned above. Petrone et al. [16], fabricate FETs on polyethylene naphthalate (PEN) substrate from graphene, grown by chemical vapor deposition (CVD) with a 6-nm gate dielectric of HfO₂ conformally grown by ALD at 150 °C yielding a dielectric constant of k \approx 13. Figure 1 demonstrates graphene FET schema and characteristics with and without strain. The source-togate current, I_{sg} , is measured to remain below 0.5 pA over the entire strain range during device characterization, indicating negligible leakage current through the dielectric even at high strain; carrier mobility μ for these flexible FETs is \sim 1500 cm²/Vs and does not practically change with strain up to 1.75%. Although mobility remains relatively constant with strain, the position of the Dirac point in Figure 1d with respect to gate voltage $V_{\rm gs}$ is observed to shift with increasing strain. The authors attribute this shift to changes in device electrostatics, related to mobile trapped charges in the gate oxide and at the graphene–oxide interface, as the substrate is flexed. I–V characteristics (Figure 1e) are for the plotted increasing levels of strain, ranging from 0% to 1.75%. Changes in $I_{\rm d}$ with increasing strain are most likely connected with ${\rm HfO_2}$ degradation under applied strain. FETs fabricated on smooth spin-coated polyimide films fabricated from CVD graphene with gate dielectric from 20-nm thick Al₂O₃ deposited by ALD process exhibit field-effect mobility up to 4930 cm²/Vs and 1130 cm²/Vs for electrons and holes, respectively [17]. Liquid polyimide was spin-coated on a 50-nm thick plasma-enhanced chemical vapor deposited Si₂N₄ sacrificial layer on silicon. Temperature dependent measurements indicate that carrier transport is not limited by intrinsic mechanisms but by charged impurities, surface roughness, and defects, suggesting that further increases in mobility are possible. Thus further improvement of charge transport is achievable with better fabrication processes. The main advantage is the use of additional rigid substrate during the fabrication process. It was demonstrated that the performance of graphene field effect transistors fabricated on flexible substrates is easily degraded by deformation, delamination and shrinkage during the device fabrication [18]. Multiple thermal annealing on graphene devices could be performed without damages to the flexible substrate using a rigid supporting substrate (Figure 2). As a result, a very high performance including electron mobility about 13000 and hole mobility 9200 cm²/Vs could be achieved for graphene FET with the use of Al₂O₃ gate oxide [18]. Results of mechanical tests of the FET given in Figure 2b,c demonstrate some degradation of the carrier mobility. Additional technological improvements or special design are suggested to enhance the FET operation with ${\rm Al_2O_3}$ gate oxide. Multifinger electrodes are implemented on flexible substrates to strengthen its current drive for FET with 15-nm thick ${\rm Al_2O_3}$ [19]. Bendability of these FETs is tested with the bending radius of down to 1.3 mm (strain \sim 4.6%), the devices remain fully functional with less than 8.7 % reduction and no reduction in the electron and hole mobility after repeated bending tests, respectively. Silicon-nitride passivation offers efficient chemical protection over diverse liquids and robust mechanical protection against impacts. The wrinkled Al_2O_3 layer containing effective built-in air gaps with a small gate leakage current of 10^{-13} A was used for fabrication of the top gated nanotube FET [20]. The resulting devices with a geometrically wrinkled Al_2O_3 dielectric layer exhibit an excellent on/off ratio of $\sim 10^5$, a mobility of $\sim 40~\rm cm^2/Vs$ and a low operating voltage less than 1V. The transistors retained performance under strains as high as 20% without appreciable leakage current increases or physical degradation. In this case zirconium oxide (ZrO₂) is an excellent high-k dielectric material with multiple desirable characteristics, including a high dielectric constant (~23), a wide band gap (5.1 – 7.8 eV) and good thermal stability [21]. In our case it was fabricated at high temperatures (~ 1000°C). Although ZrO₂ has higher dielectric constant than the more popular materials (Al₂O₃, HfO₂), materials created at relatively low temperatures (200-300°C) exhibit poor thermal stability [22]. However, as flexible device technology does not support high temperatures, ZrO₂ may be used as gate dielectric. **Figure 1:** (a) Schematic of graphene FET fabricated on PEN, a flexible and transparent substrate. (b) Cross-sectional schematic of flexible FET device. (c) Photograph of electronic measurement approach for FET under 1.5% strain. (d,e) Low-field transport characteristics of a flexible FET with a device channel width of 30 μm. (d) Device resistance, R, is plotted against gate-to-source voltage, V_{gs} , at a fixed source-to-drain bias of Vsd = 10 mV. (e) Current-voltage (I-V) characteristics plotting drain current, I_d, as a function of V_{sd} I-V curves are taken at fixed Vgs decreasing from 0.25 V (orange) to -1 V (black) in 0.25 V steps. Data are presented for increasing values of strain of v_{sd} I-V (black) in 0.25 V steps. Data are presented with permission from Ref. 16. Copyright (2012) American Chemical Society. Figure 2: (a) Fabrication process for flexible FET with use of additional rigid substrate. (b) Mobility as a function of bending radius and distance. (c) Mobility as a function of bending cycles. Bending radius was 7.9 mm. Inset shows the automated bending machine with device. Reprinted with permission from Ref. 18. The deposition of high-k dielectrics is usually achieved using ALD with utilization of reactive surface groups [23]. Functionalization of graphene surface for ALD either introduces undesired impurities or breaks the chemical bonds in the graphene lattice, inevitably leading to a significant degradation in carrier mobilities. Synthesizing $\rm ZrO_2$ at high temperature, and then transferring them onto graphene through a dry transfer process at room temperature preserves the integrity of the graphene lattice. As a result the top-gated graphene FET with transconductance of 2.0 mS/ μ m, and carrier mobility of ~1300 cm²/Vs is obtained [23]. Few attempts have been made to produce $\rm ZrO_2$ in a solution [24]. But the electrical properties of the film annealed at a low temperature were not encouraging because residual organic particles remained at the dielectric. Hasan et al. [22], demonstrated the use of plasma annealing at a reasonably low temperature and achieved improved dielectric properties such as lower leakage current, higher dielectric constant, and better reliability; and such $\rm ZrO_2$ layers could be applied in all-printed electronic devices in the near future. One more very important item for gate dielectrics is a built-in and interface charges. The lower values of these charges the more promising dielectric we have. The standard values of built-in or interface charge density in the widely used $\rm Al_2O_3$ films are in the range $10^{12}\text{-}10^{13}~\rm cm^{-2}$ [25], in $\rm HfO_2$ they vary within $10^{11}\text{-}10^{12}~\rm cm^{-2}$ [26,27], and in the Si/SiO_Graphene/ $\rm ZrO_2$ structures they range within (1-15)x10^{11}~\rm cm^{-2}'eV^{-1} [22]. Thus, relatively high charge values are observed for $\rm Al_2O_3$ and $\rm HfO_2$ films. From this point of view only h-BN discussed in more details below has demonstrated low values of charges. According to the measurements using the atomic force microscopy probe the charge values are ~2-3x10^{10}~e/cm^2 [28]. The effect of various dielectrics (SiO₂, Al₂O₃, HfO₂, and ZrO₂.) on charge mobility in single-layer graphene is theoretically investigated by Konar [29]. It is found that though high-k dielectrics can strongly reduce Coulombic scattering by dielectric screening (Figure 3), scattering from surface phonon modes arising from them wash out this advantage (arrays in Figure 3). Calculations show that the available choice of dielectrics offers not many advantages for improving carrier mobility in actual FET devices at room temperatures. # Promising insulating materials for graphene-based flexible electronics Hexagonal boron nitride (h-BN) have been used in a top or bottom gate configurations as they can provide an atomically smooth surface that can protect the surface charge traps and the rippling of transferred graphene films [30]. The difficulty in synthesizing high-quality and large area h-BN films, and mechanical properties of h-BN, however, limit its applications on flexible substrates. Perton et al. [31], fabricated flexible graphene field-effect transistors with graphene channels fully encapsulated in hexagonal boron nitride (h-BN). For FETs with channel lengths of 2 μ m the authors managed to demonstrate an exceptional room-temperature carrier mobility up to 10 000 cm²/Vs and a lower mobility for lower channel lengths (for instance, mobility of 2200 cm²/Vs for channel length of 375 nm). Study of mechanical flexibility has revealed strain limits of 1%. Strain- induced fluctuations in mobility result in less than 3% degradation at $\varepsilon = 0.5\%$ and less than 13% degradation at $\varepsilon = 1\%$. Conductivity exhibits less than 20% degradation from its unstrained value over the entire measured strain range ($\varepsilon = 0-1\%$). Mechanical failure of flexible FETs occurs at strains greater than $\varepsilon = 1\%$. Failure of flexible FETs may be connected not only with gate dielectric but with metal contacts. Metal electrodes are uniformly stretched to approach their maximum allowable strain without degradation of over 4%, which corresponds to the bending radius of ~1.5 mm [32]. This fact is in good agreement with the results for flexible MoS, FETs implementing h-BN dielectrics [33], properties were stable within 13% up to 1.5 % strain. Elastic properties and intrinsic strength of ultrathin (2-5 monolayers) hexagonal BN film grown with use of chemical vapor deposition was examined by nanoindentation and show 2D elastic modulus in the range of 200-500 N/m, and a strain limit of h-BN films greater than 3.0%. [34]. These properties look very promising for applications in the flexible electronics, but structure and properties of CVD grown h-BN are strongly distinguished from h-BN exfoliated from crystals, and only the last one provides high mobility in graphene. Yttrium oxide (Y2O3) is an attractive gate dielectric material for electronic devices due to its high dielectric constant (a relative dielectric constant of $\kappa=10$ on graphene) [35]. Since high quality ultrathin Y₂O₃ layers (~ 5 nm) provide very large capacitance on top of graphene surfaces which is comparable to the quantum capacitance of graphene, the top-gated Y₂O₃/graphene devices are considered as ideal structures for exploring the density of states of pristine and disordered graphene [36]. Similarly to other kinds of oxide layers, the electron-hole mobility asymmetry is observed. After Y₂O₃ deposition, however, the graphene samples maintain a high mobility value ($\sim\!20~000$ cm/Vs at cryogenic temperature), which is much higher than those previously reported 1200 cm/Vs for room temperature [37]. Thus the ultrathin Y₂O₃ layers deposited on graphene hardly introduce any interface phonon scattering or resonant scattering centers, which is different from usual behavior of other kinds of oxide layers [36]. In the case of successful fabrication process of **Figure 3:** Color online (a) Electron mobility in graphene as a function of the gate dielectric constant. High-k dielectrics reduce Coulombic impurity scattering but strong SO phonon scattering reduces the RT carrier mobility to ~10⁴ cm² Ns. (b) Electron and hole conductivity as a function of carrier concentration for graphene on SiO_2 and ZrO_2 Reprinted with permission from Ref. 29. ultrathin $\rm Y_2O_3$ layers, which avoids the growth of precursors normally occurring in the atomic-layer deposition process, the damaging effect caused by plasma in sputtering or by the multi-step lithography and lift-off processes. The ion gel (for instance, poly(styrene-methyl methacrylatestyrene)triblock copolymer and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) can be used by means of the solution-based process and exhibit high capacitance of the gate dielectric $\sim 5 \mu F/cm^2$ [38]. The ion gel-gated graphene transistors provided both high on/off current and low-voltage operation. Lee et al. [39] presented a stretchable and transparent all-graphene transistor array on a stretchable rubber substrate with using an ion gel dielectric in a low-temperature printing process. Such monolithic graphene devices had hole and electron mobilities about 1190 and 420 cm²/Vs, respectively, with stable operation of more than 10³ stretching cycles. Kim et al. [40], reported transparent, flexible graphene transistors and inverters in a coplanar-gate configuration made by a printing process; such devices consisted of only two materials: graphene and an ion gel gate dielectric. These devices exhibited excellent performance, including low-voltage operation with a high transistor on current and mobility, excellent mechanical flexibility, environmental stability, and reasonable inverting behavior upon connecting two transistors. Sire et al. [41], demonstrated graphene transistors created from suspension and operated at gigahertz frequencies. Some parameters of these transistors are as follows: current gain cutoff frequencies achieve 2.2 GHz, power gain cutoff frequencies are 550 MHz, a field-effect hole mobility is 102±19 cm²/Vs and maintains high stability under bending. It is the highest reported mobility for printed graphene or carbon nanotube inks (~90 cm²/Vs) [42,43]. Dielectric films used in this study as a gate insulator is yttrium oxide. Recently, as an alternative, graphene oxide (GO), which can be produced by the oxidation process of graphene in the same way as native oxide of Si, SiO₂, has been exploited as a gate dielectric for graphene-based FETs [44]. This material with good mechanical and optical properties offers a unique advantage for high performance flexible and transparent electronic devices because it can be formed on a graphene channel by solution-based or direct oxidation process at room temperatures [45,46]. In particular, Jeong [47], reported a GO insulator in an electronic device (memory elements) that can be operated with good environmental stability. High-performance, flexible all-graphene-based thin film transistor was fabricated on plastic substrates using a graphene active layer, graphene oxide dielectrics, and graphene electrodes (Figure 4) [48]. The GO dielectrics exhibit a dielectric constant of 3 -5 at different temperatures, leakage current of 17 mA/cm² for 100 nm thick, and breakdown bias was 1.5x106 V/cm. Graphene-based EFTs showed a hole and electron mobility of 300 and 250 cm²/(V·s), respectively. Flexibility of these transistors was tested by bending the supporting PET substrate. The bending properties of the devices are also very good, as expected, due to the excellent mechanical properties of both graphene and GO (Figure 4). Typical transfer characteristics were quite stable under the operation of tensile strains from 0 to 3.5% (corresponding to bending radii calculated using models for this geometry of 4.13 mm) and showed complete recovery after the strain was relaxed [48]. The normalized hole and electron mobility had a distribution of less than 10% Standley et al. [49], have fabricated transistors comprising single or bilayer graphene channels, graphite oxide gate insulators, and metal top-gates. The graphite oxide layers show relatively high leakage current at room and cryogen temperature (~20 A/cm² for 4 nm GO). It is one of the main problems of GO as dielectric layer. Increase in GO thickness leads to weak decrease in leakage current (compared with data for [48]). The breakdown electric field of graphite oxide was found to be comparable to SiO_2 , typically~ $(1-3)x10^6$ V/cm, while its dielectric constant is slightly higher, $\kappa \approx 4.3.$ The carrier mobility in a FET was found to be equal to ~ 700 cm²/Vs. Another flexible graphene field effect transistor on polyimide substrate using graphene oxide as top-gate dielectric was fabricated by Jewel et al., [50]. Good current saturation and peak hole and electron mobilities about 500 cm²/Vs and 160 cm²/Vs are observed. A maximum transconductance of 0.42 mS and the intrinsic cutoff frequency of 117 GHz are achieved when the gate length is reduced up to $0.25 \mu m$. Generally, GO have combined an excellent flexibility with relatively large leakage current and strong limitation on enhanced temperature (even under current flow). This limitation on enhanced temperature is connected with reducing GO: for instance, annealing at 100°C typically leads to a decrease in GO layer resistivity by 4-5 orders of magnitude [51,52]. The most stable graphene derivative with dielectric properties is fluorinated graphene (FG). Fluorinated graphene is low k material with $k=1.2\,$ [53]. Recently, new simple approach for graphene fluorination (treatment in aqueous solution of hydrofluoric acid) was suggested [54,55]. In the case of graphene suspension such treatment leads not only to fluorination of the flakes but also to additional **Figure 4:** (a) Schematic illustration of bottom-gated graphene/GO transistor from Ref. [48 Lee 2012]. The graphene channel which was monolithically patterned with source and drain electrodes is above the GO dielectric. (b) Typical transfer characteristic of graphene/GO transistors, indicating the hole and electron mobilities are 300 and 250 cm²/Vs at $V_{\rm DS}$ =–0.1 V, respectively. (c) Resistance versus applied gate voltage at different temperatures. Inset shows the microscope image of the real device that has a channel length of 10 μm and width of 25 μm, respectively (scale bar: 100 μm). (d) Optical image of the all-graphene-based transistor formed on plastic substrate. (e) Transfer curves measured as a function of tensile strains (from 0% to 3.5%). Inset shows effective mobility as a function of the bending radius. Reprinted with permission from Ref. 48. Copyright (2012) American Chemical Society. flake fragmentation and exfoliation (Figure 5) [56,57]. As a result a considerable decrease in thickness and lateral sizes of the graphene flakes (up to 1-5 monolayer in thickness and 20-30 nm in diameter) is found to be accompanied by simultaneous transition of the flakes from conducting to insulating state. Smooth and uniform insulating films with roughness ~ 2 nm and thicknesses down to 10 -20 nm were deposited from the suspension on silicon. The electrical and structural properties of the films suggest their use as insulating elements in thinfilm nano- and microelectronics device structures. In particular, it was found that the films prepared from the fluorinated suspension display rather high breakdown voltages (field strength of (1-3)x106 V/cm), ultra-low densities of charges in the film and at the interface with silicon substrate in metal-insulator-semiconductor structures (~ (1-5)x10¹⁰ cm⁻²). Such excellent characteristics of the dielectric film can be compared only with well-developed SiO, layers. The films from the fluorinated suspension are cheap, practically feasible and easy to produce. Combination of the oxidized and fluorinated graphene suspensions for creation of the insulated films gives the most outstanding results for the decrease of leakage current in the film [58]. Two-layer GO-FG films (thin film of fluorographene on graphene oxide) exhibit good insulating properties: the leakage currents in GO-FG film ($\sim 10^{-4}$ A/cm²) was by 3-5 orders of magnitude lower than that in the graphene oxide or fluorographene films (Figure 6). Moreover, a significant increase in thermal stability of GO-FG films was revealed: annealing of the films up to temperatures 350°C leads to a decrease in film resistance of about one order of magnitude. These effects are connected with good affinity of the materials when application of thin fluorographene films (a few nanometers) from suspension with much smaller flakes (by an order of magnitude) decorates and eliminates structural defects in the graphene oxide films, and blocking conductivity in graphene oxide. Relatively low charges in the film and at the interface with silicon $(3x10^{10} - 1.4x10^{11} \text{cm}^{-2})$ were obtained in two-layer GO-FG films. The built-in charge density in the composite film of 10-20% fluorographene suspension in the graphene oxide suspension is much less than that in the two-layer film ($< 1x10^{10} \text{cm}^{-2}$). The effective permittivity of two-layer and composite films varies from 1.1 to 4.3 depending on composition, which is important for applications. The created two-layer and composite films may be practically applied in 2D printed and flexible electronics as insulating films (gate dielectrics, substrates for graphene, protected coatings, Transparent dielectrics can be fabricated from graphene oxide or fluorinated graphene dispersions [51,59-61]. The film thickness which determines film transparency can be controlled by the concentration of the graphene oxide suspension and oxidation (fluorination) degree. For instance, the optical transmittance for GO film with 9 nm thickness was found to be equal to $\sim95\%$ [60], and the optical transmittance values at a wavelength of 550 nm were 87% - 96% for the films with thickness $\sim\!16$ and 3 nm made from 1.5 and 0.5 mg/ml suspensions, respectively [61]. FETs fabricated using a poly(methylmethacrylate) (PMMA) and lithium fluoride (LiF) composite dielectric is presented by Kumar et al., [62]. Increasing the concentration of LiF in the composite dielectric reduces the operating gate voltages significantly, from 10 V to 1 V, due to a decrease in resistance. Electron and hole mobility of 350 and 310 cm²/Vs at $V_{\rm D}$ = -5 V are obtained for graphene FETs with 10 % LiF concentration in the composite. Using composite dielectric also enabled excellent performance on flexible substrates without any significant change in mobility and resistance. Flexible FETs with only 5 % and 12 % variation in mobility for 30° and 75° bending are obtained. LiF is a high k-dielectric and PMMA a low k dielectric with the values of dielectric constants 9.0 and 2.6, respectively. ## Summary and outlook Among traditional high-k materials (Al_2O_3 , HfO_2 , and ZrO_2) used for gate insulators in graphene FETs on flexible substrates fabricated by means of atomic layer deposition the maximal value of strain without strong degradation of the device characteristics are obtained for Al_2O_3 (strain 4.6%). Typical values of carrier mobilities observed in FET with different high–k dielectrics are ranged from 500-2000 cm²/Vs. Moreover in the case when FET was fabricated without **Figure 5:** SEM images of the surface of films fluorinated in the aqueous solution of HF during different times. The scales in the images are identical. a-pristine (non-fluorinated) film; b, c, and d-films fluorinated respectively during 2, 10, and 40 days. The inset in Fig. 5 d shows an image of an edge of the film taken at the angle 45° to the surface; the film thickness indicated in the figure was evaluated with allowance for measurement geometry Reprinted with permission from Ref. 56. Figure 6: Current – voltage characteristics of two-layer and composite films: (a) for the lateral and (b) the vertical FG/GO structure with thickness of the printed graphene oxide layers of 35 nm, and thickness of fluorinated grapheme of 2-3 nm. (c) Comparison of the current values through the GO, FG and FG/GO films deposited by droplets. (d) Current – voltage characteristic for the vertical structure of the composite GO-FG film. Contact squares in all cases were 0.3-0.5 mm². [58]. damages to the flexible substrate due to using a rigid supporting substrate very high device performance including carrier mobilities of about 9000 - 13000 cm²/Vs were obtained. Nevertheless, ${\rm Al_2O_3}$ demonstrates relatively high leakage current and charges in the layers and at the interface. Fluorinated graphene or combination of FG with graphene oxide are very promising alternative variants. They have the same strain limitation as the graphene. Two-layer FG – GO films or composite FG: GO layers have low values of the leakage current and the charges in the layer and at the interface. Dielectric constant of any variants of FG – GO compositions are varied in the range of 4.3 – 1.2. Carrier mobilities in the FET with GO gate layers are found to be ~300700 cm²/Vs. Moreover, both FG and GO are high transparent layers. Generally, dielectric layers fabricated from fluorinated graphene or in combination with graphene oxide are the most promising graphene based derivative flexible and transparent electronics. Mechanical properties of h-BN limit its applications for devices on flexible substrates. Mechanical properties of Y_2O_3 , ion gels and other new gate dielectric materials for flexible electronics are not studied yet. Further development and study of these materials will clarify their perspectives for applications. ### Acknowledgements This study was supported by the Russian Science Foundation (grant No. 15-12-00008). ### References - 1. Ahn JH, Hong BH (2014) Graphene for displays that bend. Nat Nanotechnol 9: 737–738. - Vidor FF, Meyers T, Hilleringmann U (2015) Flexible electronics: integration processes for organic and inorganic semiconductor-based. Thin-Film Transistors. Electronics 4: 480-506. - Kim SJ, Choi K, Lee B, Kim Y, Hong BH (2015) Materials for flexible, stretchable electronics: graphene and 2D materials. Annu Rev Mater Res 45: 63-84 - He Q, Wu S, Gao S, Cao X, Yin Z, et al. (2011) Transparent, flexible, allreduced graphene oxide thin film transistors. ACS Nano 5: 5038–5044. - Kim BJ, Jang H, Lee SK, Hong BH, Ahn JH (2010) High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett 10: 3464–3466. - Torrisi F, Hasan T, Wu W, Sun Z, Lombardo A, et al. (2012) Inkjet-printed graphene electronics. ACS Nano 6: 2992–3006. - Sire C, Ardiaca F, Lepilliet S, Seo JWT, Hersam MC, et al. (2012) Flexible Gigahertz transistors derived from solution-based single-layer grapheme. Nano Lett 12: 1184–1188. - Lee SK, Kim BJ, Jang H, Yoon SC, Lee C, et al. (2011) Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett 11: 4642–4646 - Cole DJ, Ang PK, Loh KP (2011) Ion Adsorption at the graphene/electrolyte interface. J Phys Chem Lett 2: 1799–1803. - Kamyshny A, Magdassi S (2014) Conductive Nanomaterials for printed electronics. Small 10: 3515–3535. - Li SL, Miyazaki H, Kumatani A, Kanda A, Tsukagoshi K (2010) Low operating bias and matched input- output characteristics in graphene logic inverters. Nano Lett 10: 2357–2362. - 12. Ong CW, Zong DG, Aravind M, Choy CL (2003) Tensile strength of zinc oxide films measured by a microbridge method. J Mater Res 18: 2464–2472. - Li SL, Miyazaki H, Lee MV, Liu C, Kanda A, et al. (2011) Complementary like graphene logic gates controlled by electrostatic doping. Small 7: 1552–1556. - Liao L, Bai J, Cheng R, Lin YC, Jiang S, et al. (2010) Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. Nano Lett 10: 1917–1921. - Lu CC, Lin YC, Yeh CH, Huang JC, Chiu PW (2012) High mobility flexible graphene field-effect transistors with self-healing gate dielectrics. ACS Nano 6: 4469–4474 - Petrone N, Meric I, Hone J, Shepard KL (2013) Graphene field-effect transistors with gigahertzfrequency power gain on flexible substrates. Nano Lett 13: 121–125. - Lee J, Tao L, Hao Y, Ruoff RS, Akinwande D (2012) Embedded-gate graphene transistors for high-mobility detachable flexible nanoelectronics. Appl Phys Lett 100: 152104. - Lee S, Iyore OD, Park S, Lee YG, Jandhyala S, et al. (2014) Rigid substrate process to achieve high mobility in graphene field-effect transistors on a flexible substrate. Carbon 68: 791–797 - Lee J, Tao L, Parrish KN, Hao Y, Ruoff RS, et al. (2012) Multi-finger flexible graphene field effect transistors with high bendability. Appl Phys Lett 101: 252109. - Chae SH, Yu WJ, Bae JJ, Duong DL, Perello D, et al. (2013) Transferred wrinkled Al2O3 for highly stretchable and transparent graphene– carbonnanotube transistors. Nature Materials 12: 403–409. - Perkins CM, Triplett BB, McIntyre PC, Saraswat KC, Haukka S, et al. (2001) Electrical and materials properties of ZrO2 gate dielectrics grown by atomic layer chemical vapor deposition. Appl Phys Lett 78: 2357. - Hasan M, Jang M, Kim DH, Nguyen MC, Yang H, et al. (2013) Improved electrical properties of solution-processed zro2 gate dielectric for large-area flexible electronics Jap J Appl Phys 52: 100206. - Liao L, Bai J, Lin Y, Qu Y, Huang Y, et al. (2010) High Performance top-gated graphene nanoribbon transistors using zirconium oxide nanowires as high-k gate dielectrics. Adv Mater 22: 1941–1945. - Hwang SM, Lee SM, Park K, Lee MS, Joo J, et al. (2011) Effect of annealing temperature on microstructural evolution and electrical properties of sol-gel processed ZrO2 / Si films. Appl Phys Lett 98: 022903. - Hoex B, Gielis JJH, Van de Sanden MCM, Kessels WMM (2008) On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3. J App Phys 104: 113703. - Garg R, Chowdhury NA, Bhaskaran M, Swain PK, Misra D (2004) Electrical characteristics of thermally evaporated HfO2. J Electrochem Soc 151: F215-F219. - 27. Terlinden NM, Dingemans G, Vandalon V, Bosch RHEC, Kessels WMM (2014) Influence of the SiO2 interlayer thickness on the density and polarity of charges in Si/SiO2/Al2O3 stacks as studied by optical second-harmonic generation. J App Phys 115: 033708. - Decker R, Wang Y, Brar VW, Regan W, Tsai HZ, et al. (2011) Local electronic properties of graphene on a bn substrate via scanning tunneling microscopy. Nano Lett 11: 2291–2295. - Konar A, Fang T, Jena D (2010) Effect of high-k gate dielectrics on charge transport in graphene-based field effect transistors. Phys Rev B 82: 115452. - Dean CR, Young AF, Meric I Lee C, Wang L, Sorgenfrei S, et al. (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5: 722–726. - Petrone N, Chari T, Meric I, Wang L, Shepard KL, et al. (2015) Flexible graphene field-effect transistors encapsulated in hexagonal boron nitride ACS Nano 9: 8953–8959. - 32. Li T, Huang Z, Suo Z, Lacour SP, Wagner S (2004) Stretch ability of thin metal films on elastomer substrates. Appl Phys Lett 85: 3435. - 33. Lee GH, Yu YJ, Cui X, Petrone N, Lee CH, et al. (2013) Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7: 7931–7936. - Song L, Ci L, Lu H, Sorokin PB, Jin C, et al. (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10: 3209–3215. - Xu H, Zhang Z, Wang Z, Wang S, Liang X, et al. (2011) Quantum capacitance limited vertical scaling of graphene field-effect transistor. ACS Nano 5: 2340-2347 - 36. Wang L, Chen X, Wang Y, Wu Z, Li W, et al. (2013) Modification of electronic properties of top-gated graphene devices by ultrathin yttrium-oxide dielectric layers. Nanoscale 5: 1116-1120. - Wang ZX, Xu HL, Zhang ZY, Wang S, Ding L, et al. (2010) Growth and performance of yttrium oxide as an ideal high-k gate dielectric for carbonbased electronics. Nano Lett 10: 2024–2030. - Kim BJ, Jang H, Lee SK, Hong BH, Ahn JH, et al. (2010) High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett 10: 3464–3466. - Lee SK, Kim BJ, Jang H, Yoon SC, Lee C, et al. (2011) Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett. 11: 4642– 4646. - 40. Kim BJ, Lee SK, Kang MS, Ahn JH, Cho JH (2012) Coplanar-gate transparent graphene transistors and inverters on plastic. ACS Nano 6: 8646–8651. - Sire C, Ardiaca F, Lepilliet S, Seo JWT, Hersam MC, et al. (2012) Flexible gigahertz transistors derived from solution-based single-layer grapheme. Nano Lett. 12: 1184–1188. - 42. Rouhi N, Jain D, Zand K, Burke P (2011) Fundamental Limits on the Mobility of Nanotube_Based Semiconducting Inks. J Adv Mater 23: 94–99. - Antonova IV (2016) 2D printed technologies with use of Graphene based materials. Physics – Uspechi. - 44. Lee SK, Jang HY, Jang S, Choi E, Hong BH, et al. (2012) All graphene-based thin film transistors on flexible plastic substrates. Nano Lett 3472–3476. - 45. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3: 270–274. - Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, et al. (2007) Preparation and characterization of graphene oxide paper. Nature 448: 457-460. - Jeong HY, Kim JY, Kim JW, Hwang JO, Kim JE, et al. (2010) Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett. 10: 4381–4386. - 48. Lee SK, Jang HY, Jang S, Choi E, Hong BH, (2012) All graphene-based thin film transistors on flexible plastic substrates. Nano Lett 12: 3472–3476. - 49. Standley B, Mendez A, Schmidgall E, Bockrath M (2012) Graphene-graphite oxide field-effect transistors. Nano Lett 12: 1165–1169. - Jewel MU, Siddiquee TA, Islam MR (2013) Flexible graphene field effect transistor with graphene oxide dielectric on polyimide substrate. International Conference on Electrical Information and Communication Technology 1-5. - Eda G, Chhowalla M (2010) Chemically derivative graphene oxide: towards large-area thin – film electronics and optoelectrinics. Adv Mater 22: 2392-2415 - 52. Alexandrov GN, Smagulova SA, Kapitonov AN, Vasil'eva FD, Kurkina II, et al. (2014) Thin partially reduced oxide–graphene films: structural, optical, and electrical properties. Nanotechnologies in Russia 9: 363–368. - 53. Ho KI, Huang CH, Liao JH, Zhang W, Li LJ, et al. (2014) Fluorinated graphene as high performance dielectric materials and the applications for graphene nanoelectronics. Sci Rep 4: 5893. - 54. Nebogatikova NA, Antonova IV, Volodin VA, Prinz VYa (2013) Functionalization of graphene and few-layer graphene with aqueous solution of hydrofluoric acid. Physica E 52: 106-111. - 55. Nebogatikova NA, Antonova IV, Prinz VYa, Timofeev VB, Smagulova SA (2014) Graphene quantum dots in fluorographene matrix formed by means of chemical functionalization. Carbon 77: 1095-1103. - 56. Nebogatikova NA, Antonova IV, Prinz VYa, Kurkina II, Alexandrov GN, et al. (2015) Fluorinated graphene dielectric films obtained from functionalized graphene suspension: preparation and properties. Phys Chem Chem.I Phys 17: 13257-13266. - Nebogatikova NA, Antonova IV, Kurkina II, Soots RA, Vdovin VI, et al. (2016) Fluorinated graphene suspension for inkjet printed technologies. Nanotechnology 27: 205601. - Ivanov AI, Nebogatikova NA, Kotin IA, Antonova IV (2016) Two-layer and composite films based on oxidized and fluorinated grapheme. Scientific Reports in press. - 59. Nair RR, Ren W, Jalil R, Riaz I, Kravets VG, et al. (2010) Fluorographene: a twodimensional counterpart of Teflon. Small 6: 2877-2884. - Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, et al. (2008) Evalution of solution-processed reduced graphene oxide films as transparent conductors. - Zhu Y, Cai W, Piner RD, Velamakanni A, Ruoff RS (2009) Transparent selfassembled films of reduced graphene oxide platelets. Appl Phys Lett 95: 103104. - Kumar A, Tyagi P, Dagar J, Srivastava R (2016) Tunable field effect properties in solid state and flexible graphene electronics on composite high - low k dielectric. Carbon 99: 579–584. Copyright: © 2016 Antonova I V. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.