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Abstract

The microbiome–imaging axis, or radio microbiomics, is an emerging fi eld that combines medical imaging with gut microbiome analysis to map how the gut 
communicates with distant organs, particularly the brain. While traditional research often focuses on simple correlations, this framework uses structural and functional 
imaging to visualize the actual physical impact of gut dysbiosis on host tissue. This review explores how microbial metabolites, such as short-chain fatty acids (SCFAs) 
and bile acids, act as molecular messengers that trigger changes in brain connectivity, cortical thickness, and liver fat deposition. We examine the clinical utility of these 
fi ndings as non-invasive biomarkers for Alzheimer’s disease, Multiple Sclerosis, and NAFLD. Additionally, we discuss the development of pathogen-specifi c PET tracers 
that allow doctors to see active infections directly, rather than just the body’s infl ammatory response.
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Introduction

The microbiome–imaging axis, often referred to as 
radiomicrobiomics, represents an emerging interdisciplinary 
framework that integrates advanced medical imaging with 
gut microbiome analysis to visualize and quantify interactions 
between the gastrointestinal tract and distant organ systems, 
particularly the brain [1-3]. This framework builds on 
accumulating evidence that the gut microbiota communicates 
with the central nervous system through metabolic, immune, 
and neural pathways, and that these interactions can be 
captured using structural, functional, and metabolic imaging 
techniques. By combining microbiome profi ling with 
radiological data, radiomicrobiomics provides a systems-
level approach to characterizing the biological mechanisms 
underlying the gut–brain axis (GBA) and the contribution of 
gut dysbiosis to disease pathogenesis [1,3].

The core strength of the microbiome–imaging axis lies in 
its capacity to integrate quantitative imaging parameters—
including brain morphology, connectivity, and metabolic 
activity—with microbial compositional and functional data 
to map the downstream effects of gut-derived signals on 
the central nervous system [1,3]. While early microbiome 
research primarily identifi ed associations between specifi c 
microbial taxa and neurological disorders, this framework 
extends beyond correlation by linking microbial alterations 
to observable structural and functional brain changes [1]. 
Radiomicrobiomics specifi cally leverages radiomics-derived 
imaging features alongside high-throughput microbiome 
datasets to identify imaging biomarkers and potential 
mechanistic pathways within the GBA [2,3]. Importantly, this 
approach supports a bidirectional model, capturing not only 
how microbial metabolites and immune mediators infl uence 
CNS architecture, but also how brain activity feeds back to 
regulate gut physiology [1,3,4].
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Understanding how gut microbial alterations are refl ected in 
medical imaging is critical for uncovering disease mechanisms, 
identifying biomarkers, and improving clinical decision-
making. Whereas microbiome studies typically provide 
compositional or functional snapshots, imaging enables 
visualization of the physiological consequences of dysbiosis, 
including altered white matter integrity, cortical thinning, 
and disrupted functional connectivity [1,3]. These imaging 
correlates help distinguish pathogenic microbial effects from 
adaptive or compensatory changes. Moreover, imaging-based 
signatures associated with dysbiosis show promise as non-
invasive biomarkers for early diagnosis, risk stratifi cation, 
and prognostication in conditions such as Alzheimer’s disease, 
schizophrenia, and Crohn’s disease [1,5,6]. Integration of 
imaging with microbiome and metabolomic data further 
supports precision medicine approaches by improving 
patient stratifi cation and therapeutic targeting. For instance, 
combined MRI–microbiome models have been used to estimate 
biological age in schizophrenia, enhancing assessment of 
cognitive decline [5], and to improve prediction of cumulative 
bowel damage in Crohn’s disease [6]. Imaging also provides 
an objective means of monitoring responses to microbiome-
targeted interventions, such as probiotics, prebiotics, and 
dietary modifi cation, through longitudinal assessment of brain 
structure and function [1].

Multiple imaging modalities contribute complementary 
insights into microbiome-related disease processes. Magnetic 
Resonance Imaging (MRI) is the most extensively utilized 
modality. Structural MRI and voxel-based morphometry have 
demonstrated associations between specifi c microbial taxa and 
alterations in hippocampal volume, cortical thickness, and 
gray matter morphology in disorders including Alzheimer’s 
disease and irritable bowel syndrome [1,2]. Diffusion Tensor 
Imaging (DTI) has revealed correlations between taxa such as 
Eggerthellaceae and white matter tract integrity, particularly 
in pathways relevant to memory and language, and has 
identifi ed microstructural abnormalities in germ-free animal 
models [1,7]. Functional MRI (fMRI), both resting-state and 
task-based, has linked gut microbiota composition to altered 
connectivity in networks governing emotion, cognition, and 
autonomic regulation, including evidence of probiotic-induced 
modulation of the default mode network [1,3]. Magnetic 
Resonance Spectroscopy (MRS) enables in vivo quantifi cation 
of brain metabolites and has identifi ed abnormal choline peaks 
in the anterior cingulate cortex of individuals at ultra-high 
risk for psychosis, consistent with membrane dysfunction 
potentially related to dysbiosis [8].

Beyond neuroimaging, Magnetic Resonance Enterography 
(MRE) enables macroscopic assessment of intestinal 
infl ammation and structural damage in Crohn’s disease, and its 
integration with microbiome signatures improves prediction 
of disease severity and progression [6]. Emerging ultra-high-
fi eld (UHF) MRI offers unprecedented spatial resolution for 
visualizing small brainstem and spinal structures implicated in 
vagal and spinal components of the GBA [4]. Positron Emission 
Tomography (PET) further complements MRI by providing 
metabolic and molecular specifi city. FDG-PET and amyloid-

targeted tracers have demonstrated associations between 
microbiome alterations and cerebral glucose metabolism, 
amyloid deposition, and neuroinfl ammation in Alzheimer’s 
disease [1,2]. PET imaging of microglial activation offers 
insight into infl ammatory processes potentially driven by 
microbial metabolites such as short-chain fatty acids [8]. 
Although modalities such as CT and ultrasound play supporting 
roles—particularly in hybrid approaches such as PET–CT—
advanced MRI techniques remain central due to their superior 
soft tissue characterization and compatibility with multi-omic 
integration [6,9].

Overall, the microbiome–imaging axis represents 
a transformative approach for visualizing the systemic 
consequences of gut dysbiosis. By integrating radiological 
phenotyping with microbial and metabolic data, this 
framework enhances mechanistic understanding, supports 
the development of non-invasive biomarkers, and lays the 
foundation for personalized therapeutic strategies across 
neurological and gastrointestinal disorders.

Building on these imaging-based insights into gut–organ 
communication, the following section focuses on the gut–liver 
axis, where microbiome-driven metabolic and infl ammatory 
pathways can be directly quantifi ed using advanced hepatic 
imaging techniques.

Microbiome and metabolic/liver diseases

The gut–liver axis is a central regulator of metabolic 
homeostasis, refl ecting the bidirectional interaction between 
the gut microbiota and hepatic physiology. Owing to its 
anatomical and functional connection to the intestine via the 
portal circulation, the liver is continuously exposed to gut-
derived metabolites, microbial products, and infl ammatory 
mediators, rendering it particularly susceptible to alterations 
in microbial composition and activity [4,5]. Accumulating 
evidence indicates that gut dysbiosis plays a critical role in the 
initiation and progression of non-alcoholic fatty liver disease 
(NAFLD) and metabolic syndrome by modulating hepatic 
lipid accumulation, infl ammation, and fi brogenesis through 
multiple interconnected biological pathways.

Infl uence of gut microbiota on liver fat, fi brosis, and in-
fl ammation

Several mechanisms link microbial imbalance to liver 
pathology. Increased intestinal permeability, a hallmark of 
dysbiosis, facilitates translocation of bacteria and microbial 
products such as lipopolysaccharide (LPS) into the portal 
circulation [2,4]. LPS activates Toll-like receptor 4 (TLR4) on 
hepatic Kupffer cells, inducing pro-infl ammatory cytokine 
release—including TNF-α and IL-6—which promotes hepatic 
infl ammation and triggers stellate cell activation, a key driver 
of fi brogenesis [1,5,7]. Dysregulation of bile acid metabolism 
further contributes to metabolic dysfunction. Microbiota-
mediated modifi cation of bile acids alters signaling through 
the FXR and TGR5 pathways, disrupting glucose and lipid 
homeostasis [1,7,8]. Secondary bile acids, such as deoxycholic 
acid, may also impair intestinal barrier integrity and exert 
hepatotoxic effects [7]. 
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Faecalibacterium prausnitzii [6]. Metabolomic analyses have 
identifi ed 3-(4-hydroxyphenyl) lactate as a metabolite jointly 
associated with hepatic fi brosis and steatosis, correlating 
strongly with the abundance of Bacteroides caccae, Clostridium 
spp., and Escherichia coli [3].

Microbial correlates of hepatic steatosis, assessed using MRI-
PDFF or ultrasound, include elevated abundance of the family 
Veillonellaceae, which has been linked to increased NAFLD risk 
[8]. Conversely, taxa such as Rikenellaceae, Barnesiellaceae, 
and Bifi dobacterium adolescentis are associated with reduced 
disease likelihood [8]. Taurocholic acid, a bile acid derivative, 
positively correlates with NAFLD risk and higher microbiome-
based risk scores [8]. Consistent with fi brosis-associated 
fi ndings, elevated levels of 3-(4-hydroxyphenyl)lactate are also 
observed in individuals with MRI-defi ned NAFLD, reinforcing 
its role as a shared microbial metabolite associated with both 
hepatic fat accumulation and fi brotic remodeling [3]. Despite 
these consist ent associations, the predominantly cross-
sectional design of existing studies limits causal inference, 
underscoring the need for longitudinal, multi-omic imaging 
studies to clarify temporal relationships.

Microbiome and brain imaging: the gut–
brain axis

The gut–brain axis (GBA) operates as a bidirectional 
communication network through which the gut microbiota 
interacts with the central nervous system via neural, endocrine, 
immune, and metabolic pathways [9]. Dysbiosis—alterations in 
microbial composition—can affect brain plasticity, structural 
organization, and physiological activity by modulating 
neurotransmitter production, infl uencing the hypothalamic–
pituitary–adrenal axis, activating infl ammatory cascades, and 
changing microbial metabolite availability [9,10]. Advances in 
neuroimaging have enabled the detection of these microbiome-
driven effects on functional networks, cortical morphology, 
white-matter architecture, and neurometabolite signatures.

Infl uence of gut microbiota on brain structure, connecti-
vity, and metabolism

Evidence indicates that gut microbiota are critical 
modulators of intrinsic functional brain networks. Functional 
connectivity (FC) analyses reveal that microbial composition 
affects large-scale systems such as the default mode network 
(DMN), salience network (SN), and frontoparietal network 
(FPN). Genera including Prevotella and Bacteroides show 
strong associations with connectivity strength within these 
networks [11]. Microbial diversity correlates with global 
network topology, with higher diversity linked to small-
world network properties that support cognitive functions 
like working memory [12-16]. Experimental studies in germ-
free mice demonstrate widespread hyperconnectivity and 
poorly modularized networks, highlighting the importance 
of microbial colonization for normal synaptic pruning and 
network maturation [14]. Additionally, gut microbes infl uence 
structural–functional coupling in regions such as the fusiform 
gyrus and hippocampus, affecting cognitive control and 
attentional processes [17].

Additional microbially mediated pathways exacerbate NAFLD 
pathogenesis. Certain bacterial species, including Klebsiella 
pneumoniae and Escherichia spp., produce endogenous ethanol, 
increasing oxidative stress and intestinal permeability and 
thereby amplifying hepatic injury [4,5,7]. Microbial conversion 
of dietary choline into trimethylamine (TMA) reduces choline 
availability for very-low-density lipoprotein (VLDL) synthesis, 
impairing hepatic lipid export and promoting steatosis [1,7]. 
Alterations in tryptophan metabolism also contribute to 
disease progression. A shift from the protective indole pathway 
toward the pro-infl ammatory kynurenine pathway—driven by 
increased indoleamine 2,3-dioxygenase (IDO) activity—has 
been associated with hepatic infl ammation and fi brosis [2]. 
Reduced levels of indole-3-propionic acid (IPA), a microbial 
metabolite that supports gut barrier integrity, have likewise 
been linked to more advanced fi brotic disease [2].

Imaging methods used to evaluate microbiome-related 
liver changes

Non-invasive imaging modalities play a critical role in 
quantifying hepatic steatosis, infl ammation, and fi brosis, 
particularly in research contexts where liver biopsy is 
impractical or unethical [6]. MRI–Proton Density Fat Fraction 
(MRI-PDFF) is a highly precise and reproducible technique for 
quantifying hepatic fat content and is widely adopted as a non-
invasive biomarker, with a threshold of ≥5% commonly used to 
defi ne NAFLD [3,6]. Magnetic Resonance Elastography (MRE) 
provides an accurate assessment of liver stiffness as a surrogate 
marker of fi brosis and is considered the most sensitive non-
invasive method for detecting advanced fi brosis, with values 
≥3.63 kPa indicating clinically signifi cant disease [3,6].

Ultrasound-based elastography techniques, including 
vibration-controlled transient elastography (VCTE; 
FibroScan), offer accessible alternatives for estimating liver 
stiffness; however, their diagnostic accuracy may be reduced 
in individuals with obesity, and they are less reliable for 
staging disease severity [5,6]. Conventional ultrasonography 
remains widely used for detecting hepatic steatosis but has 
limited sensitivity for mild fat infi ltration and cannot reliably 
distinguish simple steatosis from non-alcoholic steatohepatitis 
(NASH) [5,7]. Collectively, these imaging approaches provide 
non-invasive platforms for linking structural and functional 
liver changes with microbiome-derived metabolic and 
infl ammatory signatures.

Microbial taxa and metabolites correlating with imaging 
fi ndings

Recent studies integrating microbiome profi ling with MRI-
PDFF and MRE have identifi ed characteristic microbial and 
metabolomic patterns associated with hepatic steatosis and 
fi brosis. Advanced fi brosis, as defi ned by MRE, is consistently 
associated with increased abundance of Gram-negative 
taxa, including Proteobacteria, Enterobacteriaceae, and 
Escherichia coli, alongside depletion of benefi cial Firmicutes 
such as Eubacterium rectale and Ruminococcus obeum 
[1]. In NAFLD-related cirrhosis, microbial signatures shift 
further toward enrichment of Streptococcus, Megasphaera, 
and Gallibacterium, accompanied by marked reductions in 
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Microbiome-related changes also extend to brain structure 
and microstructure. Structural MRI studies indicate that 
microbial enterotypes, such as Bacteroides or Prevotella 
dominance, are associated with differences in cortical thickness 
and gray matter volume. Individuals with a Bacteroides 
enterotype often show reduced prefrontal cortical thickness 
compared with those dominated by Ruminococcaceae or 
Prevotella [10]. Diffusion tensor imaging (DTI) links families 
such as Selenomonadaceae and Veillonellaceae with white-
matter integrity in the frontal cortex and cerebellum [11]. 
Germ-free mouse models complement these fi ndings, showing 
immature microglia, altered dendritic spine density, and 
impaired structural organization in the absence of microbiota 
[14].

Infl ammatory and metabolic pathways form another critical 
connection between gut microbial communities and neural 
function. In schizophrenia, peripheral cytokines (IL-2, IL-6, 
TNF-α) mediate relationships between specifi c bacterial taxa, 
such as Succinivibrio, and altered anterior cingulate cortex 
activity [9]. Short-chain fatty acids (SCFAs), mainly produced 
by commensal bacteria, maintain blood–brain barrier integrity 
and reduce neuroinfl ammation [10]. Reduced SCFA-producing 
genera are common in depression and schizophrenia and are 
linked to abnormal neural responses [9]. Microbial genera, 
including Bacteroides and Parabacteroides, also regulate 
glutamate–GABA pathways, connecting dysbiosis to altered 
metabolic activity in cerebellar and limbic circuits [10].

Neuroimaging techniques to study the gut–brain rela-
tionship

Radiomicrobiomics, which integrates microbiome data 
with neuroimaging, has transformed the study of gut–brain 
interactions [10]. Resting-state fMRI (rs-fMRI) remains the 
primary tool for mapping FC alterations related to microbial 
variability, with dysbiosis linked to disrupted synchrony in 
DMN, SN, and limbic networks [11,12]. Task-based fMRI shows 
complementary effects; probiotic supplementation can reduce 
amygdala reactivity to emotional stimuli and enhance executive 
control circuits during working-memory tasks [12,13].

DTI reveals associations between microbial taxa and white-
matter integrity in frontal lobes, cerebellum, and corpus 
callosum [11]. Structural MRI measures cortical thickness and 
gray-matter volume, showing microbiome-related differences 
in the hippocampus and prefrontal cortex [10]. Magnetic 
resonance spectroscopy (MRS) provides metabolic insights by 
quantifying neurometabolites such as GABA, glutamate, and 
N-acetylaspartate, corresponding to microbiome composition 
or probiotic interventions [9].

Machine learning models combining microbial sequencing 
with neuroimaging biomarkers improve disease classifi cation. 
Support vector machines and deep learning approaches 
achieve high accuracy (AUC > 0.90) in distinguishing clinical 
populations from controls based on microbial abundance and 
neural features [9,10].

Diseases studied in the gut–brain–imaging context

Major depressive disorder (MDD) shows reduced SCFA-
producing bacteria (Faecalibacterium, Coprococcus) and 

increased pro-infl ammatory taxa (Enterobacteriaceae, 
Eggerthella), correlating with abnormal hippocampal and 
DMN connectivity [10]. IBS demonstrates structural alterations 
in the prefrontal cortex and hypothalamus, with disrupted 
SN connectivity [18]. Schizophrenia presents a strong 
infl ammatory microbiota–brain axis, where elevated cytokines 
associated with Succinivibrio and Proteus correlate with 
reduced regional homogeneity and altered brain volume [9]. 
ASD is linked to microbial Clostridium overgrowth, associated 
with reduced fractional anisotropy in the corpus callosum [10]. 
Bipolar disorder and hepatic encephalopathy further illustrate 
the infl uence of microbial modulation on neural function and 
connectivity [7,20,21].

Imaging microbial infections directly

Radiology and nuclear medicine are increasingly essential 
for detecting infectious processes; however, conventional 
imaging lacks sensitivity and specifi city. CT and MRI are widely 
used to localize infections and determine tissue involvement 
[22], but they rely on structural changes like edema, necrosis, 
or fl uid collections, which appear only at later stages [22,23]. 
Early infection often goes undetected, and anatomical imaging 
cannot reliably differentiate active bacterial infection from 
sterile infl ammation or malignancy [23,22]. Conventional 
nuclear medicine methods using [18F]FDG or radiolabeled 
leukocytes detect infl ammatory activity rather than pathogens, 
generating false positives in sterile infl ammatory lesions or 
tumors [22,23].

To overcome these limitations, microbe-targeted 
radiopharmaceuticals have been developed to image pathogens 
directly. These agents exploit prokaryote- or fungal-specifi c 
pathways, such as siderophore-mediated iron acquisition, 
specialized sugar metabolism, and folate synthesis [22,23]. 
Radiolabeled siderophores like [68Ga]Ga-DFO-B selectively 
accumulate in infections caused by Pseudomonas aeruginosa 
and Staphylococcus aureus [22]. Para-aminobenzoic acid 
(PABA) analogs target bacterial folate synthesis, allowing 
specifi c detection without uptake in noninfected host tissue 
[24].

Among promising tracers is 2-deoxy-2-[18F]fl uoro-D-
sorbitol ([18F]FDS), which selectively enters Enterobacterales 
via a sorbitol-specifi c pathway absent in mammalian cells 
[24,25]. [18F]FDS accumulates in infected tissues but not 
in Staphylococcus aureus, host tissues, or cancer cells, and 
can distinguish fungal species (C. albicans vs. C. glabrata) 
[24,25]. In contrast, [18F]FDG accumulates non-specifi cally 
in metabolically active tissues, including sterile infl ammation 
and tumors [25].

Microbial PET tracers are evaluated for diverse infections. 
In invasive aspergillosis, [18F]FDS distinguishes fungal 
infi ltrates from bacterial pneumonia or sterile infl ammation in 
immunocompromised patients [25]. Musculoskeletal infections 
use D-methyl-[11C]methionine and [68Ga]Ga-NOTA-
UBI29-41 to differentiate septic from aseptic implant loosening 
[26]. Pulmonary and cardiovascular infections, including 
tuberculosis and endocarditis, are being studied using various 
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pathogen-specifi c tracers [26]. MRI complements PET by 
providing structural information and elucidating microbiome–
host interactions across organ systems [23,24].

Molecular pathways linking microbiome to 
imaging changes

The gut microbiome (GM) and its metabolites exert 
profound effects on host health and central nervous 
system (CNS) function. Research across neurodegenerative, 
psychiatric, and infl ammatory diseases consistently highlights 
that the microbiota-gut-brain axis (GBA) represents a robust 
bidirectional communication system, necessitating advanced 
methodologies to elucidate underlying mechanisms [27].

Microbial metabolites and host pathways

The mechanistic link between gut fl ora dysbiosis and host 
pathology is mediated by small-molecule metabolites that 
modulate immune, metabolic, and neural systems.

Short-Chain Fatty Acids (SCFA) and neuroinfl ammation: 
SCFAs, primarily acetate (AA), propionate (PA), and butyrate 
(BA), are essential microbial products frequently depleted in 
disease states [28]. Lower plasma PA/AA and BA/AA ratios are 
strongly associated with increased T2 lesion load and higher 
disability scores (EDSS) in patients with multiple sclerosis 
(MS) [29]. These depleted SCFA ratios negatively correlate 
with pro-infl ammatory cytokine-producing immune cells 
(GM-CSF+, TNF-α+, IFN-γ+ T and B cells), suggesting that 
SCFA imbalances promote environments that exacerbate 
neurodegenerative processes [29]. Similarly, in Alzheimer's 
disease (AD) and amnestic Mild Cognitive Impairment (aMCI), 
SCFA concentrations decline progressively, coinciding with a 
reduction in SCFA-producing Firmicutes taxa such as Clostridia 
and Blautia [28,30].

Bile acids, lipids, and toxic byproducts: Other mediating 
metabolites include bile acids (BAs) and host lipids. Altered 
BA profi les correlate with neuroimaging biomarkers in AD; 
for instance, lower cholic acid (CA) levels are associated with 
decreased hippocampal volume and reduced FDG-PET brain 
glucose metabolism [28]. Lipid metabolism dysfunction in 
AD, refl ected by declines in serum sphingomyelin (SM) and 
ether-containing phosphatidylcholines (PC), affects cellular 
lipid rafts—platforms infl uencing Aβ accumulation and tau 
oligomer production, linking metabolic status to structural 
integrity [28].

Pro-infl ammatory microbial products such as 
lipopolysaccharide (LPS), derived from Gram-negative bacteria 
(e.g., Bacteroides), translocate across impaired barriers, 
linking systemic infl ammation to brain regions with elevated 
amyloid load (frontal, anterior cingulate, precuneus cortex) as 
visualized by PET imaging [27,30,31].

Microbial metabolic defi ciency and organ function: In the 
gastrointestinal tract, SCFA shortage due to reduced bacterial 
load (e.g., via broad-spectrum antibiotics) forces colonocytes 
to switch energy metabolism to glycolysis, resulting in 
measurable increases in colonic 18F-FDG uptake (SUVmax/

mean) on FDG-PET-CT [32]. This demonstrates a unique 
functional imaging application to monitor host–microbiota 
interactions [32].

Quantitative neuroimaging: Mapping the microbiome's 
impact

Quantitative neuroimaging is essential for translating GBA 
research into spatial and temporal visualization of microbial-
induced brain effects [27].

Functional MRI (fMRI) and connectivity changes: Resting-
state fMRI (rsfMRI) measures functional connectivity (FC) and 
BOLD signal alterations due to GM changes [27]. In MCI patients, 
regions with decreased intrinsic brain activity, particularly the 
cerebellar vermis IV-V (0.01–0.08 Hz), negatively correlate 
with Bacteroidetes abundance [30]. Functional disruptions in 
cerebellar regions, traditionally linked to motor control and 
cognition, parallel decreased cognitive scores. Probiotics or 
fermented milk products modulate brain activity in emotion- 
and sensation-related networks, such as the DMN and salience 
network, decreasing BOLD signals in viscero-sensory cortices 
[27,30].

Structural and microstructural imaging (VBM and DTI): 
Voxel-based morphometry (VBM) identifi es structural 
changes; studies link GM composition to increased sensory 
region volumes and decreased insular and prefrontal cortices 
in IBS patients [27]. Germ-free (GF) mice models further 
demonstrate that commensal bacteria are necessary for 
normal neural morphological development, showing regional 
expansion of olfactory bulbs and prefrontal cortex [27,31].

Diffusion tensor imaging (DTI) provides fractional 
anisotropy (FA) and mean diffusivity (MD) measures of white 
matter integrity. Fecal matter transplantation (FMT) from 
ADHD patients into GF mice reduces FA and increases MD in the 
hippocampus and fornix, indicating GM directly impacts neural 
microstructure [27,31]. Increased Actinobacteria abundance 
correlates with higher FA in amygdala and thalamus in obese 
men, underscoring DTI specifi city beyond VBM [27].

Multi-omics integration and biomarker discovery

Integration of microbiome, metabolome, and functional 
gene data identifi es reproducible, disease-specifi c signatures, 
enhancing diagnostic accuracy.

Integrative analysis in IBD: Cross-cohort integrative 
analysis (CCIA) of IBD used nine metagenomic and four 
metabolomic cohorts, identifying 31 species, 25 KO genes, 
and 13 metabolites that consistently differentiated IBD from 
healthy controls [33]. Integration of multi-omics signatures 
improved AUROC to 0.98, outperforming single-omics 
models [33]. KEGG orthology (KO) analysis highlighted 
upregulated two-component systems and downregulated 
propanoate metabolism, with crp gene expression correlating 
with fecal calprotectin [33]. Multi-omics correlation maps 
revealed impaired microbial biotransformation (e.g., rocF 
downregulation leading to urea accumulation) and enriched 
aminoacyl-tRNA biosynthesis, suggesting immune regulatory 
roles [33].
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Shotgun metagenomics in Hematopoietic Cell 
Transplantation (HCT): In HCT patients under chemotherapy 
and broad-spectrum antibiotics, shotgun metagenomic 
sequencing enabled high-resolution functional analysis of 
resistomes and virulence factors [31]. Metagenome-assembled 
genomes (MAGs) tracked bacterial population dynamics, 
including shifts in dominant Enterococcus faecium strains, 
validated with orthogonal PCR [31]. These analyses highlight 
clinical relevance for detecting microbial threats in vulnerable 
populations [31].

Future directions

Neuroimaging and multi-omics integration complement 
each other in characterizing GBA functional consequences 
[27,32]. While metagenomics and metabolomics reveal 
microbial components and molecular messengers, quantitative 
neuroimaging (fMRI, DTI, PET) provides measurable evidence 
of temporal and spatial effects on CNS and GI tissues [27,32]. 
Longitudinal studies and controlled preclinical models (GF 
and gnotobiotic animals) are critical for confi rming causality 
[27]. The combined use of imaging and multi-omics data 
holds substantial potential for developing non-invasive, high-
accuracy biomarkers for diagnosis, prognosis, and therapy 
monitoring in complex diseases such as AD, MS, and IBD 
[27,33].

Radiomicrobiomics and multi-omics inte-
gration

Defi ning radiomicrobiomics and neuroimaging-omics

Radiomicrobiomics integrates quantitative brain imaging 
with gut microbiome data, enabling investigation of complex 
bidirectional communication systems like the GBA, particularly 
relevant in AD pathogenesis [28]. Neuroimaging-omics or 
multi-omics integration combines radiomic features with 
biological data (microbiomics, genomics, metabolomics) 
to identify multi-dimensional signatures critical for 
understanding interaction mechanisms and discovering 
biomarkers or therapeutic targets [28,34].

Data layers include microbiome composition (via 16S rDNA 
or metagenomic sequencing) [28]; imaging-derived radiomics 
(multi-modal MRI, 18F-FDG-PET) [28,35]; and metabolomics 
profi ling (e.g., SCFAs, BAs) as intermediate signals bridging 
gut microbiota and brain [28].

AI and deep learning approaches for integration

Artifi cial intelligence (AI), especially deep learning (DL), 
is crucial for integrating high-dimensional, heterogeneous 
radiomics and multi-omics data [34]. CNNs process raw 2D/3D 
images, extracting features while maintaining spatial context 
[34]. Generative models (VAEs, GANs) handle incomplete data, 
generate synthetic samples, and infer missing modalities [34]. 
Transformers combined with GANs can relate MRI features to 
SNP data to predict cognitive decline [34].

Sequential models (RNNs) handle longitudinal imaging 
data in diseases like AD, and combined RNN-VAE frameworks 
capture both temporal and cross-modal dimensions [34]. 

Integration strategies—early, intermediate, late fusion—
enable learning nonlinear inter-modality relationships and 
shared latent spaces [34].

Challenges in combining high-dimensional imaging and 
microbiome data

Integrating imaging and omics data presents challenges 
due to heterogeneity, scale differences, and missingness [35]. 
High feature dimensionality leads to overfi tting and unreliable 
analyses. Spatial and temporal discrepancies occur because 
imaging is longitudinal, while molecular profi ling may not 
be systematic [35,36]. Differences in technical platforms, 
measurement scales, and feature counts complicate integration 
[34,35]. Missing modalities reduce usable sample size, limiting 
machine learning performance [36].

Lack of standardized nomenclature linking radiomic data 
with biological omics further hinders reproducibility and 
global correlation [35]. Addressing these challenges requires 
innovative multi-layer computational systems to ensure 
structured relationships and consistency across data types [35].

Methodological challenges and study quality

The central methodological challenge in microbiome 
imaging research is that current imaging modalities do not 
visualize microorganisms directly; instead, they detect microbial 
metabolic activity or downstream effects on host tissues 
[37]. This indirect detection paradigm refl ects the physical 
limitations of existing imaging technologies, particularly their 
insuffi cient spatial resolution to resolve individual microbes 
in vivo [37]. While intentional, this constraint introduces 
interpretative challenges when distinguishing microbial-
derived signals from host background effects, especially in 
complex biological environments. These challenges are further 
compounded by the intrinsic complexity, inter-individual 
variability, and temporal instability of the human microbiome 
[37].

A substantial body of literature demonstrates that 
systematic biases may be introduced at nearly every stage of 
microbiome research, from sample acquisition to downstream 
bioinformatic analysis [38]. When such biases intersect with 
imaging-derived endpoints, they may propagate or amplify 
error, underscoring the need for rigorous methodological 
control and cautious interpretation [38].

Limitations and biases in microbiome–imaging studies

Low-microbial-biomass samples and contamination: 
Low-microbial-biomass (LMB) samples represent one of the 
most signifi cant constraints in microbiome–imaging studies, 
particularly when derived from tissues traditionally considered 
sterile, such as blood, lung, placenta, or solid organs [39]. In 
these settings, microbial DNA signals are often comparable 
to background contamination originating from laboratory 
reagents (“kitomes”), environmental exposure, equipment, 
or personnel [39]. This limitation is critical for imaging 
validation, as spurious microbial signals may result in false 
spatial or functional associations. Earlier reports describing a 
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placental microbiome were later shown to be indistinguishable 
from contamination controls, highlighting the consequences of 
inadequate contamination control in LMB studies [39].

Biases in standard microbiome analysis: Even before 
integration with imaging, sequencing-based microbiome 
analyses are subject to substantial technical bias [38].

Sample collection and storage:

Sample collection methods impose biological constraints; 
mucosal biopsies capture adherent microbial communities, 
whereas stool or rectal swabs primarily represent luminal 
populations [38]. Storage conditions further infl uence microbial 
composition, as delayed freezing or room-temperature 
storage allows selective expansion of aerotolerant taxa such 
as Enterobacteriaceae, distorting community structure [38]. 
Chemical preservatives such as RNAlater may also bias diversity 
metrics and relative abundance estimates [38].

DNA extraction and PCR: DNA extraction introduces 
signifi cant bias due to differential lysis effi ciency among 
bacterial taxa, particularly between Gram-positive and Gram-
negative organisms [38]. The choice of extraction kit alone can 
alter inferred microbial composition [38]. In addition, PCR-
based approaches amplify DNA from both viable and non-
viable cells, complicating interpretation when imaging aims to 
refl ect active microbial metabolism [38].

Sequencing and bioinformatics: Primer selection for 16S 
rRNA gene sequencing represents a major source of bias, as 
no universal primer set amplifi es all taxa equally [38]. In 
metagenomic workfl ows, library preparation protocols can 
introduce GC-content bias, as demonstrated with certain 
commercial kits [38]. Downstream analytical decisions—
including OTU clustering versus denoising algorithms (e.g., 
DADA2, Deblur) and reference database selection (e.g., SILVA, 
Greengenes)—can yield substantially different taxonomic 
profi les from identical datasets [38]. These methodological 
choices directly infl uence how imaging-derived signals are 
contextualized and interpreted.

Limitations of specifi c imaging modalities

Each imaging modality operates within distinct physical 
and biological regimes that defi ne its applicability [37].

Optical techniques, including fl uorescence and 
bioluminescence imaging, are limited by shallow tissue 
penetration and oxygen dependence, restricting their use 
largely to preclinical models and excluding obligate anaerobes 
that dominate the gut microbiota [40]. Metabolic labeling 
approaches, whether fl uorescence-based or radionuclide-
based, are constrained by signal dilution as labeled bacteria 
divide, limiting their utility for long-term colonization studies 
[41,42].

MRI-based tracking using iron oxide nanoparticle labeling 
similarly suffers from signal dilution and lacks discrimination 
between live and dead bacteria, complicating functional 
interpretation [43]. Ultrasound-based acoustic reporter gene 

technologies represent a promising but still nascent approach; 
current limitations include genetic stability of reporter 
constructs and restricted applicability across diverse microbial 
taxa, particularly Gram-positive species [44]. PET imaging, 
while highly sensitive, is limited by spatial resolution, cost, 
radiation exposure, and tracer-specifi c pharmacokinetics, 
including non-target organ retention [37].

Infl uence of confounding factors

Pharmacologic and host-related variables represent major 
confounders in microbiome–imaging studies [37,38].

Antibiotics: Antibiotic exposure is particularly infl uential, 
as it can profoundly alter microbial composition and function. 
Wang et al. demonstrated that broad-spectrum antibiotics 
eliminated the antitumor effi cacy of anti–PD-1 immunotherapy 
by disrupting the gut microbiota [42]. Conversely, antibiotic 
treatment is now deliberately used as an experimental tool to 
confi rm bacterial specifi city of imaging signals or to monitor 
antimicrobial effi cacy [40].

Other confounders: Additional variables, including diet, 
age, host genetics, and immune status, further modulate 
microbial activity and imaging readouts [37,38]. Animal 
models, therefore, remain essential for isolating microbial 
effects under controlled conditions, although this reliance 
introduces translational limitations when extrapolating 
fi ndings to heterogeneous human populations [37].

Recommended standards for study quality

To mitigate these challenges, rigorous contamination 
control is essential, particularly for LMB samples [39]. 
Comprehensive negative controls, including extraction blank 
controls and no-template amplifi cation controls, should be 
routinely incorporated to characterize background signal [37]. 
Quantitative validation methods such as qPCR should be used 
to confi rm that microbial DNA levels in biological samples 
exceed those of control blanks [37]. Statistical decontamination 
tools, including Decontam, may then be applied to identify and 
remove contaminant sequences [37].

Standardization of protocols across studies remains 
critical for reducing inter-study variability [38]. This includes 
consistency in sample collection, storage conditions, DNA 
extraction methods, and sequencing workfl ows [38]. For 
emerging imaging modalities, built-in validation controls are 
particularly important; for example, acoustic reporter gene 
signals can be selectively erased to confi rm specifi city and 
improve reproducibility [44].

Clinical applications and future perspectives

The microbiome–imaging axis is driven by its potential 
to move beyond correlative associations and provide spatially 
resolved, functional insight into host–microbe interactions 
[37]. By integrating imaging with microbiome profi ling, 
this approach offers a pathway toward clinically actionable 
interpretation of microbial activity.
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Improving diagnosis, prognosis, and treatment monito-
ring

A primary clinical application lies in distinguishing active 
bacterial infection from sterile infl ammation, a limitation of 
conventional imaging techniques [45,46]. Bacteria-specifi c 
PET tracers targeting metabolic pathways absent in host cells, 
such as folate and peptidoglycan synthesis, represent a rational 
solution to this diagnostic challenge [45,46]. This approach 
is particularly promising for infections in anatomically 
inaccessible or sterile sites, including vertebral osteomyelitis, 
septic arthritis, diabetic foot infections, and pneumonia [46].

Functional imaging of microbial activity also enables 
early assessment of treatment response, often preceding 
anatomical changes detectable by CT or MRI [46]. Parker, et 
al. demonstrated the ability to distinguish antibiotic-sensitive 
from resistant E. coli strains in vivo using D-[³-¹¹C]alanine PET 
imaging, confi rming therapeutic effi cacy in real time [46]. 
Complementary metagenomic analyses may further guide 
therapy by identifying antimicrobial resistance genes and 
informing targeted antibiotic selection [39].

As microbiome-based therapeutics such as fecal microbiota 
transplantation and engineered probiotics gain clinical traction, 
imaging tools capable of tracking delivery, engraftment, and 
persistence will become increasingly important [40,42].

Target diseases for clinical application

Cancer: Imaging microbiome modulation of immunotherapy 
(e.g., anti-PD-1) and tumor microbiota interactions in 
colorectal and breast cancer [42].

Infectious diseases: Targeted imaging for diffi cult-to-
diagnose infections such as pneumonia, vertebral discitis-
osteomyelitis, and septic arthritis [46].

Infl ammatory and autoimmune disorders: Conditions 
like IBD, where microbial dysbiosis plays a role, are potential 
targets [38].

Neurological and metabolic disorders: Microbiome 
involvement in neuropsychiatric and metabolic diseases can be 
investigated via functional imaging of gut-brain interactions 
[37,38].

Technological and ethical challenges

Despite rapid progress, several barriers to clinical 
translation remain. Many PET tracers exhibit taxonomic bias 
or background host uptake, while metabolic labeling strategies 
are inherently limited by signal dilution, preventing long-term 
tracking of colonization [41,42]. Optical imaging techniques 
remain constrained by tissue penetration, although emerging 
fl uorophores in the near-infrared window offer potential 
improvements [37,40].

Reporter gene approaches face challenges related to 
microbial genetic engineering, particularly for obligate 
anaerobes that dominate the gut microbiota [37,40,41]. 
Methods requiring bacterial pre-labeling, such as MRI-based 

approaches, remain largely restricted to animal models [43]. 
Ultimately, widespread clinical adoption will depend on robust 
validation, standardization, and ethical oversight to prevent 
misinterpretation and potential patient harm [38,39].
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