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Abbreviations 

NPs: Nanoparticles; MOF: Metal-Organic Framework, 
S: Separator Layer; LH: Light Harnessing Layer; PSI/PSII: 
Photosystem I & II; CVD: Chemical Vapor Deposition; ALD: 
Atomic Layer Deposition; VB: Valence Band; CB: Conduction 
Band. 

Introduction

One noble aim of mankind is to develop artifi cial 
photosynthesis on the nanoscale, which can mimic the complex 
process of natural photosynthesis [1].

In the process of natural photosynthesis, sunlight energy 
is absorbed through “antenna” chlorophyll molecules [2] 
e.g. LCHs I+II, which are embedded in the multi-layered cell 
membranes, referred to as thylakoid membrane stacks, where, 
the photo-generated excitons are transferred and effi ciently 
charge separated to the reaction chlorophyll pigment centres 
with very high Quantum Effi ciencies (QEs) [3]. This light-driven 
reaction requires the cooperation of two different, membrane-
bound photochemical assemblies, referred to as photo-systems 

PSI and PSII [3]. At the nanoscale photosynthesis occurs in the 
1D periodic stacked nano-layered thylakoid stacks, with high 
surface areas and distinct layer/membrane thicknesses ≈10 nm 
- 12 nm. The thylakoid membrane stacks are also favourable 
for high-effi ciency light harvesting processes occurring in 
natural leaves [4].

In general, the term “tandem architecture” [5] describes 
a catalytic materials confi guration in which multiple catalytic 
reactions e.g. the splitting of water can take place in a 
sequential manner, within one single device or architecture. 
This includes the arrangement, of different catalytic layers, 
porous thin fi lm architectures, or photocatalytic membrane 
architectures in a 1D fashion [6]. Within this arrangement one 
reaction can act from a starting material layer e.g. oxidation 
process for the subsequent reduction process. This approach 
enables the effective transformation of initial substrates 
into desired products by integrating multiple catalytic steps 
within a multilayer tandem architecture, promoting enhanced 
effi ciency in the overall process [7].

In the last years, there is a growing interest in “tandem 
catalytic architectures” due to their ability to enhance reaction 
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effi ciency, selectivity, and atom economy [8]. The integration 
of multiple redox reactions in a catalytic tandem sequence 
offers the advantage of minimizing or eliminating undesired 
side reactions without additional purifi cation steps [9].

Materials and methods

Especially for photocatalytic application [10], SC 
(Semiconductors) with a cubane-type core-unit can mimic the 
oxidation process for [CaMn4O5] clusters in PSI as well as the 
reduction chain process for [Fe4S4] core clusters in PSII that 
are part of the Z-Scheme [3,4]. Especially spinel nanoscale 
materials M1M2X4; (M1)3X4 (e.g. composed out of M1/M2 = Fe, Cu, 
Ni, Co, Ru, Pt, Rh and X = O, S, Se), which inherently possess 
a [(M2)4X4] or [(M1)4X4] with a catalytic cubane-core unit. 
Therefore, the development of new synthetic pathways to novel 
cubane-type [M4X4, with M = Fe, Ni, Cu; X = O, S, Se] nano-
cluster materials has already been facilitated for the synthesis 
of a variety of new homo-nuclear and hetero-nuclear cubane-
type [M4S4] cluster-materials [11]. They can contain a number 
of different metals (e.g. M1 = Fe, Cu, and Ni) e.g. from the fi rst 
row of transition metals, but they are not limited to these 
metals and instead can include other catalytic metals (e.g. Ir, 
Rh, Pt) from the second-and third-row of transition metals 
[12]. These cubane-core catalytic units can mimic the reduction 
process e.g. in [NiFe] hydrogenases and have been identifi ed 
to show a signifi cant O2 tolerance under ambient conditions. 
[Fe4S4] core clusters materials have already been reported as 
“Building Blocks for Solar Fuel Catalysis” [13] (Figure 1).

Moreover, E. Redel, et al. and co-workers have reported a 
general route to the synthesis of photocatalytic active metal-
oxide NPs; for the purpose of constructing multi-layered 
porous metal oxide thin fi lms [14,15]. Such synthesis routes are 
starting from bare metal powder particles (e.g. micrometer-
scale metal powders are available for W, Mo, Ni, Co, Fe, In, 
Sn, Sb, Zn, and Mg with purity 99.5 to 99.95%) followed by 
an oxidative etch process yielding different metal-oxide 
dispersions [14,15]. The use of metal powders instead of e.g. 
expensive sol-gel precursors offers an elegant, inexpensive, 
robust, and universal green synthesis route to produce a broad 
variety of tailored metal oxide compositions, which furthermore 
allows the ‘one-pot’ multi-gram synthesis of stable 0-D metal 
oxide NP with diameters in the range of 3 nm – 5 nm [14,15]. 

Novel hierarchical tandem-based photocatalytic 
architectures can be created by the combination of different 
bottom-up and top-down deposition and/or growth techniques 
[16], e.g. through sol-gel spin-coating [16], anodic oxidation, 
sputtering, CVD [16] as well as LPE (Liquid Phase Epitaxy) 
[17] and sALD (solution based Atomic Layer Deposition) [18]. 
First examples of such tandem hybrid materials, e.g. MOF/ITO 
have been already published by E. Redel, et al. and co-workers 
[19]. Various redox-active metal oxide and chalcogenide 
nanomaterials with catalytic cubane-core cluster-units 
[(M2)4X4] or [(M1)4X4] can be chemically synthesized in solution 
and then spin-coated onto a porous thin fi lm, Figure 2. 

The LH-MOF or S-MOF layer will be grown on top of the 
fi rst deposited metal oxide or chalcogenide porous catalytic 
layer. The second catalytic layer will be deposited e.g. by 
sputtering or spin-coating on top of the LH layer or S layer. 
Development of these tandem hybrid materials will utilize 

band-gap engineered layered components, with tuneable 
absorption properties in the visible range as highly-active 
photoactive materials architectures. The porous catalytic layers 
1 and 2 between an LH-Layer or a Separator (S) Layer, Figure 
2 will also allow gas and water penetration through the porous 
MOF structure and will utilize the catalytic active surface of the 
porous layer, e.g. for water splitting.

The LH or S layers can be made up of a huge variability of 
MOFs (up to now more than 70.000 different MOF types have 
been reported [20,21]) resulting in an enormous fl exibility 
in tuning the MOF properties with regard to a desired and 
distinct function [22]. Metal-Organic Frameworks (MOFs) 
are porous and crystalline Coordination Network Compounds 
(CNCs) consisting of inorganic metal (or metal/oxo) clusters 
connected by organic linkers [23-25]. Due to their crystalline, 
highly ordered, and porous structure, this class of solids 
exhibits a number of exciting properties. The size of the pores 
within MOFs has been shown to be very adjustable, and pore 
diameters up to 10 nm [26] have recently been realized, yielding 
highly porous materials with exceptionally low densities.

In recent years, a number of methods have been developed 
to deposit MOFs on solid substrates. These deposition processes 
include spraying, painting, dipping into suspensions, spin-
coating as well as electrochemical methods and have been 
reported to yield rigid MOF thin fi lms [27]. 

Results and discussion

Optically transparent and porous 1D multi-layered thin 
fi lms will be then fabricated by either using catalytic active 

Figure 1: Materials composition with a cubane-type core-unit with the focus on new 
spinel M1M2X4; (M1)3X4 compositions.

Figure 2: Schematic picture of tandem-based multilayer assemblies composed 
with an LH-Layer or S-Layer as well as catalytic active NPs and small clusters (from 
Figure 1) as the catalytic Layers 1 & 2 forming a three-component tandem hybrid 
material.
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nanoparticles porous thin fi lms (layer 1 and 2) with optimized 
fi lm-thicknesses in the range of the respective exciton 
diffusion-length scale or Bohr exciton radius of NPs; of the 
two employed SC-materials or the MOF separating thin fi lm. 
These multi-layered architectures can act as an “artifi cial 
thylakoid membrane” comprising ultra-small NPs and/or 
active clusters as layered catalytic layers separated by the S or 
LH MOF layer. The absorption properties of the multi-layered 
materials can be either tuned by the MOF material in particular 
through the LH or the Separator (S) MOF layer as well as by the 
absorption properties of the deposited SC materials in tandem 
hybrid materials (Figures 1,2). Whereby with both approaches, 
the multi-layered tandem architectures will be able to harness 
effi ciently different parts of the solar spectrum.

The multi-layered device, Figure 3 conceived as an 
“artifi cial thylakoid membrane” or as a MOF-based hybrid 
material will be designed with custom-tailored electronic 
Band-Gap (Eg) Energy levels (CB = Conduction Band and 
VB = Valence Band), which are suitably aligned to enable 
sunlight powered electron-hole generation and charge carrier 
separation between the layers. The hybrid materials can be 
sandwiched between top- and bottom conductive electrodes 
(e.g. Au, ITO) while applying an external BIAS. The generated 
electron-hole pairs (e-/h+) will be separated at the interface 
of the multi-layered material in the separated catalytic layers 
1 and 2 within the artifi cial thylakoid membrane architecture. 
The generated and effi ciently separated charge carriers in 
the distinct layers can be used for the reduction or oxidation 
process of water splitting:

Reduction (electron-rich layer 1)

2 H+ + [(M2)4X4] or [(M1)4X4] eCB- → H2 or (2H)

Oxidation (hole-rich layer 2)

H2O + [(M2)4X4] or [(M1)4X4] hVB+ → . OH + H+

OH + H+ + [(M2)4X4] or [(M1)4X4] hVB+ → O2 (g) + 2 H+

The MOF layer can act as a Separator layer (S) or LH layer, 
between the separated redox-active porous catalytic layers e.g. 
for the oxidation as well as the reduction process, including a 
proton H+ conductive transport layer, enabling the splitting of 
water in such a biomimetic device concept, Figure 3. 

To further evaluate the effi ciency of proton H+ transport 
over the S/LH Layer additional conductivity measurements as 
well as gas-permeability tests can be applied for the generated 
H2 and O2 as separated products from the tandem MOF-based 
hybrid-system architectures.

The overall idea described here, is to develop hybrid-
based “artifi cial thylakoid membranes”, which can mimic the 
photosynthetic apparatus on the nanoscale in a multi-layered 
tandem architecture. Basic insight into the working principle 
and function of these artifi cial hybrid-based thylakoid 
membranes and devices promises important contributions to 
the fi eld of artifi cial photosynthesis. 

Conclusion 

In this concept paper new hierarchical materials, like 
multilayered tandem hybrid-system are described. These 
materials and devices can be implemented into novel bio-
mimetic devices, which can act as “artifi cial thylakoid 
membranes” or as “artifi cial photosystems” e.g. for water 
splitting. These multilayered architectures are based on active 
NPs or small active clusters with a cubane-type core unit that 
can mimic the oxidation as well as the reduction process. It 
is quite appealing to design and fabricates hybrid materials at 
the nanometre precision scale with thin fi lm thicknesses of the 
exciton diffusion lengths of the catalytic active components. 
These novel “artifi cial thylakoid membranes” and devices 
could mimic the photosynthetic apparatus and are able to 
harness sunlight on the nanoscale within a multi-layered 
architecture. The basic insight of the working principle of 
“artifi cial thylakoid membranes” and devices promises strong 
impact and benefi ts for the fi eld of artifi cial photosynthesis 
and for the development of artifi cial leaves.

Figure 3: Device concept example of a Tandem based multilayer assemblies e.g. for H2O splitting under an external BIAS.
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