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Abstract

Exposure to radioactive pollutants such as Iodine-135 I135 seriously threatens public health and environmental balance. Monitoring and managing these pollutants 
require expensive economic equipment that is not suitable for low-income countries such as Egypt. Therefore, trying to derive a mathematical model that estimates 
the concentrations of these radioactive pollutants with high accuracy and a low relative error coeffi  cient compared to the actually measured values   is very important. 
Therefore a mathematical Gaussian model was received to estimate the concentrations of I135 emitted from the research nuclear reactor in the Inshas region in Egypt using 
different shapes of plume rise in unstable conditions.

A comparison between the derived model and its maximum values with observed concentrations data measuring on Egyptian Atomic Energy Authority for I135 in 
unstable conditions has been found. The derived model may be applied to estimate and predict the emissions of any radioactive pollutant for any similar area and similar 
type of used reactor, which provides high-precision technology with zero economic cost.

The statistical technique shows that the entire Gaussian model and its maximum inside a factor of two with observed concentration data achieved 98%. In addition, 
the statistics show that all the Gaussian plume models and their maximum have a correlation coeffi  cient of about 0.95%. Also, the normalized mean square error. And the 
fraction bias. are near-zero values in all Gaussian models and their maximum. 
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Introduction

A simple model for atmospheric dispersion in short-range 
(up to 10 km from the source) is the Gaussian plume model 
as said by Curtiss and Rabl in 1996 [1]. But in 1995, Sharan, et 
al. [2] established that conventional approaches for estimating 
plume-dispersion parameters are the least likely to be suitable 
for operation under low wind speed and stable conditions. 
Gaussian-plume models play a major part in the nonsupervisory 
area. Still, they may not always be the smart models to use and 
it was noted at the 15th International Clean Air Conference 2000 
– Modeling Workshop that particular models aren’t always 
chosen on an objective scientifi c base Ross [3]. Abdel-Rahman 

[4] studied the atmospheric dispersion and Gaussian plume 
model. Essa, et al. [5] studied the plume rise and wind speed 
effect on the extreme value of air contaminant concentration. 

In artifi cial operations, the classical Gaussian diffusion 
models are substantially used in effecting the impacts of 
fi nding and proposed sources of air pollutants on local and 
urban air quality by Arya [6]. Homeliness, associated with 
the Gaussian logical model, does this approach particularly 
suitable for organizational operation in the fi ne modeling of air 
pollution. Indeed, similar models are relatively useful in short-
range soothsaying. The side and perpendicular dissipation 
parameters, independently y and z, represent the crucial 
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turbulent parameterization in this approach, once they contain 
the physical constituents that describe the dissipation process 
and, accordingly, express the spatial extent of the adulterant 
premium under the effect of the turbulent stir in the (‘Planetary 
boundary layer’) Abdul-Wahab [7]. 

The atmospheric advection- prolixity equation had long 
been made to know the transport of adulterants in a turbulent 
atmosphere was studied by Seinfeld [8]. A logical dissipation 
Model for sources in the atmospheric face subcaste with a dry 
deposit to the ground face has been studied by Kumar and 
Sharan [9]. Also researched the variation of circle diffusivity 
on the mimics of the geste of advection- prolixity equation 
was studied by Essa, et al. [10]. Essa, et al. [11] answered the 
advection- prolixity equation with variable perpendicular 
circle diffusivity and wind speed using Hankel transfi gure to 
get the crosswind integrated attention. 

This work studies the effect of premium rise on Gaussian 
premium models and their outside using different shapes of 
dissipation parameters and premium rise. After that, we used 
the Gaussian premium model, its outside, and compared it with 
observed attention data which are taken from the Egyptian 
Atomic Energy Authority for Iodine-135 I135 in an unstable 
condition. 

Mathematical models

The Gaussian model concentration can be written [12] as 
follows:
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Where, /x ue   is the radioactive decay for isotope,  = 2.9 x 
10-5 s-1 for Iodine-135. 

Where y and z are the dispersion parameters in crosswind 
and vertical directions of the plume respectively, Q is the 
emission rate, H is the effective stack height; , sH h h   hs 
is the stack height and ∆h is the plume rise, u is the mean 
wind speed, while y and z are the crosswinds and the vertical 
coordinates, respectively. 

Maximum Gaussian concentration has the form:
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Where,

2
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The mean concentration of pollutant plumes emitted from 
a point source can be assumed to have a Gaussian distribution 
which is highly idealized since they require stationary and 
homogeneous turbulence in the PBL ‘Planetary boundary layer’ 
where the fl ow may be assumed quasi-stationary for suitable 
short periods (from 10 min to 1 h) Yves, et al. [13]. 

Using the different dispersion parameters of y and z in 
each of the two cases:

The fi rst crosswind and vertical dispersion parameters for 
the convective condition are taken from the previous work of 
Lidiane, et al. in [14] with the form:
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Where; 3
*

h
w


  ;  is the mean dissipation rate of turbulence 

kinetic energy per unit time per unit mass of fl uid, Field 
observations in a convective PBL show that 0.65 by Cauchey 

and Palmer [15]. *xwX
uh

  is a non-dimensional distance 

defi ned by the travel time to the convective time scale and h is 
mixing height.

The second crosswind and vertical dispersion parameters 
for the convective condition are taken from Lidiane, et al. [16] 
in the form:
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Where,  
´ 1.5

* 

zn n
u fm i

 ;  *  fm i is the reduced frequency of the 

convective spectral peak in the form 

 * zfm i h
 .

First:

3( / )H h h h w u Ds s                       (7)

Where w is the exit velocity of the pollutants (4 m/s), D is 
the internal stack diameter, and hs is the stack height (43 m)

Second: 

Briggs plume rise 

∆h = 150 F / u ^ 3               (8)
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Where, 

F = g w (D / 2) ^ 2 (Ts - Ta)

Where; F is the buoyancy fl ux parameter, Ambient 
temperature (Ta)- 25 0C-, Stack temperature (Ts) – 50 0C-.

Third: 

Carson and Moses equation:

∆h = 3.47 w D/u + 5.15 Qh^0.5/u.                 (9)

Where,

Qh = Heat emission rate in 5000 K.cal/sec

Results and statistical  technique

Air samples were collected around the Egyptian Atomic 
Energy Authority. The vertical height is 0.7 m above ground 
from a stack height of 43 m, for twenty-four hours of working, 
where the air samples were collected for a half-hour at a height 
of 0.7m with a roughness length of 0.6 cm. The values of ‘n’ are 
a function of air stability are taken from Hanna, et al. [16]. The 
observed data of I135 isotope concentration was obtained from 
dispersion as experiments conducted in unstable conditions 
(82) and presented in Table 1. The observed concentration  of the 
I135 isotope and the meteorological data during the experiments 
are taken from Essa and El-Otaify [17] and presented in Table 
2. The predicted concentrations by Eqns. (1,3,4,7), (1,5,6,7), 
(1,3,4,8), (1,5,6,8), and (1,3,4,9), (1,5,6,9) below the plume 
centerline are also presented in Table (3). Also, The predicted 
maximum concentrations by Eqns. (2,3,4,7), (2,5,6,7), 
(2,3,4,8), (2,5,6,8) and (2,3,4,9), (2,5,6,9) below the plume 
centerline are also presented in Tables 3-5. 

A comparison between predicted and observed 
concentrations of radioactive I135 via downwind distance in 
unstable conditions at Inshas is shown in Figure 1A, also, the 
relation between predicted and observed concentration data 

are shown in Figure 1B. Comparison between observed and 
predicted, maximum concentrations for different plume rises 
in an unstable condition. is introduced by [18-20]. Where NMSE 
is the normalized mean square error, FB is the fraction bias, 
COR is the correlation coeffi cient and FAC2 is the factor of two 
in Table 6, where NMSE is the Normalized Mean Square Error 
factor of two, the statistical technique shows that the entire 
Gaussian models and their maximum inside a factor of two 

Table 1: Power-law exponent ‘n’ is a function of air stability in the urban area.

A B C D E F

n 0.85 0.85 0.80 0.75 0.60 0.40

Table 2: Meteorological data of the nine convective test runs at the Inshas site.

Run 
no.

Working hours 
of the source

Release 
rate (Bq/

m2) 

Wind 
speed 
(m /s)

 Wind 
direction(deg)

 P-G 
stability 

class

 Vertical 
distance(m)

1 48 1028571 4 301.1 A 5

2 49 1050000 4 278.7 A 10

3 1.5 42857.14 6 190.2 B 5

4 22 471428.6 4 197.9 C 5

5 23 492857.1 4 181.5 A 2

6 24 514285.7 4 347.3 D 8.0

7 28 1007143 4 330.8 C 7.5

8 48.7 1043571 4 187.6 C 7.5

9 48.25 1033929 4 141.7 A 5.0

Table 3: Observed, Maximum concentrations (Bq/m3) and downwind distance at 
different Gaussian plume rise.

Downwind 
distance 

(m)

Observed 
conc.(Bq/

m3)

Eqns. 
(1,3,4,7) 

Conc. (Bq/
m3)

Eqns. 
(1,5,6,7) 

Conc. (Bq/
m3)

Eqns. (2,3, 
4,7) Conc. 

(Bq/m3)

Eqns. 
(2,5,6,7) 

Conc. (Bq/
m3)

100 0.025 0.0234 0.0326 0.0145 0.02127

98 0.037 0.120 0.0134 0.0252 0.044329

136 0.091 0.056 0.0754 0.04356 0.078956

135 0.197 0.2456 0.154 0.09456 0.090608

106 0.272 0.2340 0.1653 0.28234 0.331532

186 0.188 0.1934 0.1365 0.1794 0.156713

165 0.447 0.3450 0.3456 0.36228 0.573346

154 0.123 0.1134 0.1093 0.15034 0.125247

106 0.032 0.0232 0.0456 0.03722 0.047909

Table 4: Observed, Maximum concentrations (Bq/m3) and downwind distance at 
different Briggs plume rises.

Downwind 
distance 

(m)

Observed 
Conc. (Bq/

m3)

Eqns.(1,3,4,9) 
Conc.(Bq/

m3)

Eqns. 
(1,5,6,9) 

Conc. (Bq/
m3)

Eqns.(2,3,4,9) 
Conc.(Bq/

m3)

Eqns.(2,5,6,9) 
Conc.(Bq/

m3)

100 0.025 0.03459 0.01239 0.029870 0.01230

98 0.037 0.07098 0.0234 0.044329 0.02341

136 0.091 0.05098 0.07890 0.078956 0.07890

135 0.197 0.0980 0.17908 0.090608 0.17908

106 0.272 0.1980 0.24560 0.331532 0.24560

186 0.188 0.082008 0.15608 0.156713 0.16081

165 0.447 0.2980 0.3601 0.53346 0.360176

154 0.123 0.13906 0.145490 0.125247 0.125490

106 0.032 0.04980 0.01590 0.02792 0.01671

Table 5: Observed, Maximum concentrations (Bq/m3) and downwind distance at 
different Carson and Moses plume rise.

Downwind 
distance 

(m)

Observed 
conc.(Bq/

m3)

Eqns.
(1,3,4,8) 

Conc.(Bq/
m3)

Eqns.
(1,5,6,8) 

Conc.(Bq/
m3)

Eqns.
(2,3,4,8) 

Conc.(Bq/
m3)

Eqns.
(2,5,6,8) 

Conc.(Bq/
m3)

100 0.025 0.01876 0.01034 0.02987 0.030234

98 0.037 0.0245 0.0290 0.044329 0.0290

136 0.091 0.0457 0.0865 0.078956 0.0865

135 0.197 0.1654 0.1541 0.090608 0.1541

106 0.272 0.2170 0.1982 0.331532 0.1982

186 0.188 0.2012 0.0980 0.156713 0.0980

165 0.447 0.5021 0.355 0.573346 0.355431

154 0.123 0.1320 0.1345 0.125247 0.1412

106 0.032 0.0612 0.0230 0.047909 0.0230
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with observed concentration data achieved 98%. In addition, 
the statistics show that all the Gaussian plume models and their 
maximum have a correlation coeffi cient of about 0.95%. Also, 
the normalized mean square error and The Fraction Bias are 
near-zero values in all Gaussian models and their maximum. 
Equations (1,3,4,8) of the Gaussian plume model with Briggs 
plume rise is the best statistical technique than other plume 
rises. In addition, Equations (2,5,6,9) of the maximum 
Gaussian plume model with Carson and Moses equation is the 
best statistical technique than other plume rises. 

Discussion

One fi nds that the Gaussian concentrations agree well with 
the observed concentrations of I135 over downwind distance 
as shown in Supplementary Figures 1A-3A and its maximum 
Gaussian concentration. In addition, we fi nd that the Gaussian 
concentrations and their peak values are within a factor of 
two with the observed concentrations of I135 as shown in the 
three Figures 1B-3B. Statistics show that all Gaussian column 
and max models have a correlation coeffi cient of about 0.95%. 
Also, normalized mean squared error and fraction bias are 
values close to zero in all Gaussian models and their maximum. 
Equations (1,3,4, and 8) of a Gaussian plume model with Briggs 
plume height is a better statistical technique than other column 
heights. In addition, equations (2,5,6, and 9) of the maximum 
Gaussian model with the Carson and Moses equation are a 
better statistical technique than other plume heights.

Conclusion

This work studies the effectiveness of three plume rises 
on Gaussian plume models and their maximum. The Gaussian 
concentrations plume models and their maximum values are 
lying inside a factor of two with the observed concentrations 
measured on Egyptian Atomic Energy Authority for Iodine-135 
I135 in an unstable condition. 

The statistical technique shows that the entire Gaussian 
model and its maximum inside a factor of two with observed 
concentration data achieved 98%. In addition, the statistics 
show that all the Gaussian plume models and their maximum 
have a correlation coeffi cient of about 0.95%. Also, the 
Normalized Mean Square Error and The Fraction Bias are near-
zero values in all Gaussian models and their maximum. 

Availability of data and m aterial 

The data that support the fi ndings of this study are available 
from the Egyptian Environmental Affairs Agency and the 
Egyptian Meteorological Authority but restrictions apply to the 
availability of these data, which were used under license for the 
current study, and so are not publicly available. However, data 
are available from the authors upon reasonable request and 
with permission of both the Egyptian Environmental Affairs 
Agency and the Egyptian Meteorological Authority.

 

Figure 1(A): 1-3- Comparison between Observed, calculated, maximum concentration for different Gaussian, Briggs and Carson, and Moses in an unstable plume rise.

Figure 1(B): 1-3- Comparison between Observed, calculated, maximum concentration, and downwind distance for different Gaussian, Briggs and Carson and Moses in an 
unstable plume rise.



015

https://www.peertechz.com/journals/open-journal-of-analytical-and-bioanalytical-chemistry

Citation: Wheida AA, Essa KS, Saied SI, El-Nazer M (2023) Studying the effect of different shapes of plume rise on Gaussian plume models and its maximum in 
unstable conditions. Open J Anal Bioanal Chem 7(1): 011-015. DOI: https://dx.doi.org/10.17352/ojabc.000029

Author’s contributions

K.E. conceived the experiments, S. E. conducted the 
experiments, and A.W and M.E. analyzed the results. All 
authors read and approved the fi nal manuscript.

Acknowledgements

The authors are expressing their gratitude to the Egyptian 
Knowledge Bank and Academy of Science, Research and 
Technology for supporting the authors in funding the 
publishing of this article. 

References

1. Curtiss PS, Rabl A. Impacts of air pollution: general relationships and site 
dependence. Atmospheric Environment. 1996; 30(19):3331–3347.

2. Sharan M, Yadav AK, Singh MP. Comparison of sigma schemes for estimation 
of air pollutant dispersion in low winds. Atmospheric Environment. 1995; 
29(16):2051–2059.

3. Ross D. Modelling workshop report. Clean Air and Environmental 
Quality. 2001; 35(3):26–27. https://search.informit.org/doi/10.3316/
informit.135004118970669

4. Abdel-Rahman AA. On the Atmospheric Dispersion and Gaussian Plume 
Model, Waste Management, Water Pollution, Air Pollution, Indoor Climate, 2nd 
International Conference, Corfu, Greece. October 26-28, 2008.

5. Essa Khaled SM, Mubarak F, Elsaid SEM. Effect of the plume rise and wind 
speed on extreme value of air pollutant concentration. Meteorol. Atmos. Phys. 
2006; 93:247–253. 10.1007/s00703-005-0168-1

6. Arya S. Air Pollution Meteorology and Dispersion. Oxford University Press. 
1999; 310.

7. Abdul-Wahab SA. The Role of Meteorology in Predicting SO2 Concentrations 
around a Refinery: An Oman Case Study, Ecol. Modell. 2006; 197: 13-20.

8. Seinfeld JH. ES Books: Atmospheric Chemistry and Physics of Air Pollution. 
Environ Sci Technol. 1986 Sep 1;20(9):863. doi: 10.1021/es00151a602. PMID: 
22263816.

9. Kumar P, Sharan M. An Analytical Dispersion Model for Sources in the 
Atmospheric Surface Layer with Dry Deposition to the Ground Surface”. 
Aerosol and Air Quality Research. 2016; 16:1284–1293.

10. Khaled E, Aziz M, Hany H, Fawzia M, Ayman k. Studying the variation of eddy 
diffusivity on the behavior of advection-diffusion equation. NRIAG Journal of 
Astronomy and Geophysics. 2018; 7 (1):10-14. 10.1016/j.nrjag.2018.02.003

11. Essa KSM, Shalaby AS, Ibrahim MAE, Mosallem AM. Analytical solutions of the 
advection-diffusion equation with variable vertical Eddy diffusivity and wind 
speed using Hankel transform. Pure and Applied Geophysics. 2020; 17:4545-
4557. https://doi.org /10.1007/s00024-020-02496-y.

12. Abd El-Wahab MM, Khaled SM. Essa HM Elsman, Soliman ASh, Elgmmal SM, 
wheida AA. Derivation of the Gaussian plume model in three dimensions. 
MAUSAM. 2014; 65:1; 83-92.

13. Jannot Y, Lasseux D. A new quasi-steady method to measure gas permeability 
of weakly permeable porous media. Rev Sci Instrum. 2012 Jan;83(1):015113. 
doi: 10.1063/1.3677846. PMID: 22299992.

14. Buligon L, Degrazia GA, Szinvelski CRP, Goulart A. Algebraic Formulation for the 
Dispersion Parameters in an Unstable Planetary Boundary Layer: Application 
in the Air Pollution Gaussian model. The Open Atmospheric Science Journal. 
2008; 2:153-159.

15. Cauchey SJ, Palmer SG. Some aspects of turbulence structure through the 
depth of the convective boundary layer. QJR. Meteorol Soc. 1979; 105: 811-27.

16. Hanna SR, Briggs GA, Hosker Jr RP. Handbook on atmospheric diffusion. 
United States. 1982. 10.2172/5591108

17. Essa Khaled SM, El-Otaify Maha S. Atmospheric vertical dispersion in moderate 
winds with eddy diffusivities as power-law functions. Meteorologische 
Zeitschrift. 2008; 17 (1):13–18.

18. Hanna SR. Confidence limits for air quality model evaluations, as estimated 
by bootstrap and jackknife resampling methods. Atmospheric Environment. 
1989; 23(6):1385–1398. 0.1016/0004-6981(89)90161-3

19. Buligon L, Gervásio D, Szinvelskia A, Charles RP, Goulart Antonio G. Algebraic 
Formulation for the Dispersion Parameters in an Unstable Planetary Boundary 
Layer: Application in the Air Pollution Gaussian Model. The Open Atmospheric 
Science Journal. 2008; 2:153-159.

20. Khaled E, Ahmed M, Ahmed S. Evaluation of analytical solution of advection 
diffusion equation in three dimensions. Atmospheric Science Letters. 2021; 
22 (1). 10.1002/asl.1043.

Table 6: Comparison between observed and predicted, maximum concentrations for 
different plume rises in an unstable condition.

NMSE FB COR FAC2

Eqns. (1, 3, 4, 7) 0.11 0.04 0.93 1.15

Eqns. (1, 5, 6, 7) 0.16 0.27 0.98 0.86

Eqns. (2, 3, 4, 7) 0.11 0.17 0.95 0.82

Eqns. (2, 5, 6, 7) 0.14 -0.04 0.95 1.03

Eqns. (1, 3, 4, 8) 0.05 0.03 0.97 0.97

Eqns. (1, 5, 6, 8) 0.14 0.26 0.98 0.75

Eqns. (2, 3, 4, 8) 0.14 -0.05 0.95 1.06

Eqns. (2, 5, 6, 8) 0.15 0.06 0.88 1.04

Eqns. (1, 3, 4, 9) 0.33 0.32 0.93 0.99

Eqns. (1, 5, 6, 9) 0.06 0.15 0.99 0.79

Eqns. (2, 3, 4, 9) 0.11 0.00 0.96 0.98

Eqns. (2, 5, 6, 9) 0.05 0.16 0.99 0.78

 

 
 

 


