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Introduction

Perovskite materials, known for their versatile properties, 
have attracted scientifi c interest in diverse technological 
applications. Among them, SrMnO3 (SMO) stands out for its 
unique electrical and magnetic behaviors. Researchers are 
exploring perovskite doping, including substituting ions like 
Ag into SMO, to enhance its properties further. SMO, with 
its ABO3 crystal structure, displays paraelectric behavior and 
antiferromagnetic ordering. Its response to mechanical strain 
is particularly intriguing, as controlled strain can induce 
ferroelectric properties and alter its magnetic behavior [1-3]. 
This study focuses on Sr0.6Ag0.4MnO3 nanoparticles, aiming to 
understand how Ag doping affects their structural, electrical, 
dielectric, and magnetic properties. Limited research exists 
on these nanoparticles, especially regarding the infl uence of 
doping concentration. The study reports the hydrothermal 
synthesis of Sr0.6Ag0.4MnO3 nanoparticles, highlighting their 

single-phase structure, uniform distribution, high electrical 
conductivity, and enhanced ferromagnetic behavior at room 
temperature.

Experimental work

The synthesis of Sr0.6Ag0.4MnO3 nanoparticles involved a 
meticulous sol-gel process with precursors including strontium 
nitrate, silver nitrate, and manganese II chloride tetrahydrate. 
The mixture underwent dissolution in nitric acid, heating, gel 
formation, and calcination, followed by crushing and pressing 
into circular pellets at varying temperatures. Characterization 
of the synthesized samples utilized advanced techniques 
such as X-ray diffraction, scanning electron microscopy, 
transmission electron microscopy, energy-dispersive X-ray 
analysis, magnetometry, and impedance analysis to explore 
structural, morphological, compositional, magnetic, and 
electrical characteristics comprehensively [4].
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Results and discussion

The X-ray Diffraction (XRD) patterns of the Sr0.6Ag0.4MnO3 

sample displayed the crystalline structure, confi rming its 
perovskite nature (Figure 1). Analysis of the powder XRD 
pattern revealed diffraction peaks indexed within the tetragonal 
perovskite structure with the space group I4/mcm. Utilizing 
the Rietveld method with the Fullprof program indicated no 
secondary phases, affi rming the material's single-phase 
nature [5-8]. The agreement between calculated and measured 
intensities suggested robust crystallization. Additionally, 
Scherrer’s equation was employed to determine the crystallite 
size, yielding a value of 27 nm.
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The SEM analysis of annealed Sr0.6Ag0.4MnO3 nanoparticles 
at 1000 °C revealed irregular fi ne particles prone to 
agglomeration, indicative of the mechanical alloying process 
[9]. The SEM images displayed a particle size of 90 nm (Figure 
2a), consistent with XRD data. Additionally, SEM coupled with 
EDX technology confi rmed the presence of all elements within 
the compound, affi rming its stoichiometry. Interestingly, 
the grain size observed in SEM images appeared larger than 
calculated by the Scherrer formula, suggesting multiple small 
crystallized grains within each observed grain (Figure 2b).

Magnetization, a key property in perovskite materials 
with the ABO3 crystal structure, was investigated in this study 
over a temperature range of 0 to 400 K. The results, depicted 
in Figure 3, revealed a notable increase in magnetization 
at approximately 375 K, indicating a transition from 
paramagnetic or antiferromagnetic to ferromagnetic states 
(Figure 3). In the ferromagnetic phase, magnetic moments 
align parallel, leading to net magnetization and the emergence 
of ferromagnetism [10-12]. Conversely, above 375 K, the 
material displays paramagnetic or antiferromagnetic behavior 
due to disordered or anti-aligned magnetic moments. The 
observed ferromagnetic transition has signifi cant implications 
for potential applications, akin to transitions seen in other 
materials like barium titanate and strontium titanate at Curie 
temperatures of 393 K and 105 K, respectively.

The examination of conductivity variation with alternating 
current (AC) frequency provides valuable insights into the 

charge transport mechanism and interactions among charge 
carriers. In Figure 4, the variation of this physical quantity 
concerning angular frequency at different temperatures is 
depicted. The conductivity spectra validate the existence of two 
distinct contributions: one at low frequencies, attributed to 
grain boundaries, and the other at high frequencies, associated 
with the grains. At low frequencies, conductivity maintains a 
constant and uniform profi le, progressively increasing with Figure 1: Powder XRD patterns of Sr0.6Ag0.4MnO3 nanoparticle.

(b) 

Figure 2: Image SEM (a) and EDX spectra (b) of Sr0.6Ag0.4MnO3 nanoparticle at room 
temperature.

Figure 3: Variation of the magnetization as a function of temperature for 
Sr0.6Ag0.4MnO3 nanoparticle.
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temperature, indicating the activation of thermal conduction 
processes within the material [13].

Conclusion

In summary, the sol-gel synthesis of Sr0.6Ag0.4MnO3 
perovskite resulted in a high-quality, monophasic material 
with a well-defi ned crystal structure (I4/mcm). Structural 
and morphological analyses confi rmed purity and revealed a 
crystallite size of approximately 27 nm. Magnetic investigations 
demonstrated a distinctive ferro-paramagnetic transition at 
375 K, showcasing its magnetic responsiveness. With its unique 
combination of magnetic and electrical properties, alongside its 
well-defi ned structure, Sr0.6Ag0.4MnO3 emerges as a promising 
candidate for various high-tech applications, including energy 
storage and electronics. This study signifi cantly advances our 
understanding and exploration of perovskite materials tailored 
for diverse technological applications.
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Figure 4: Variation of AC conductivity with frequency.
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